Вневпи́санная
окружность
треугольника
— окружность, касающаяся одной из сторон треугольника и продолжений двух других его сторон. У любого треугольника существует три вневписанных окружности (в отличие от единственной
вписанной
).
Существование и единственность вневписанной окружности обусловлены тем, что
биссектрисы
двух
внешних углов
треугольника и биссектриса внутреннего угла, не
смежного
с этими двумя, пересекаются в одной точке, которая и является центром такой окружности.
Содержание
Свойства
Здесь используются обозначения:
— радиусы вневписанных окружностей с центрами
, касающиеся соответственно сторон
треугольника;
— полу
периметр
треугольника;
— радиус
вписанной окружности
;
— радиус
описанной окружности
.
Длина отрезка касательной, проведенной к вневписанной окружности из противоположной вершины, равна полупериметру треугольника.
На прямой, проходящей через точки касания двух
вневписанных окружностей
треугольника с его сторонами, эти вневписанные окружности отсекают равные отрезки.
Последнее можно сформулировать так. Если 2 вневписанные окружности треугольника касаются 2 его разных сторон и 2 их продолжений в 4 точках касания, то образуемый 4 последними точками, как вершинами, четырехугольник есть равнобокая трапеция, у которой равны 2 боковые стороны, а также равны две диагонали (касательные к 2 окружностям).
Замечание
В англоязычной литературе 4 центра 4 окружностей: 1 вписанной и 3 вневписанных окружностей с центрами соответственно
, касающиеся соответственно 3 разных сторон
треугольника или их продолжений, - называют 4
трехкасательными центрами треугольника
(
the tritangent centers
)
.
О 4 трехкасательных центрах треугольника
существует множество теорем:
4 трехкасательных центра треугольника
лежат на внутренних биссектрисах треугольника или на их продолжениях. При этом 2 трехкасательных центра делят
гармонически
ту биссектрису, на которой они расположены и на ее продолжении.
. То есть
гармоническую четвёрку
образуют 4 точки:
, где
- основание внутренней биссектрисы, проведенной из вершины угла
треугольника
.
Точка Фейербаха
для данной вписанной или вневписанной окружности (трехкасательная окружность - по-английски "a tritangent circle ") является точкой пересечения 2
прямых Симсона
, построенных для концов диаметра описанной онружности, проходящего через соответствующий центр вписанной или вневписанной окружности. Таким образом, точки Фейербаха могут быть построена без использования соответствующей вписанной или вневписанной окружности и касающейся ее
окружности Эйлера
.
Построение вневписанной окружности треугольника
Чтобы построить вневписанную окружность треугольника нужно
:
Построить внешние углы для углов треугольника
Провести биссектрисы построенных внешних углов до точки их пересечения. Точка пересечения биссектрис будет центром вневписанной окружности.
Построить радиус окружности. Для этого провести перпендикуляр из точки пересечения биссектрис на продолжения одной из сторон.
Провести окружность с центром в точке пересечения биссектрис и радиусом, равным длине построенного перпендикуляра.
Внеописанный четырёхугольник
— это
выпуклый
четырёхугольник,
продолжения
всех четырёх сторон которого являются касательными к
окружности
(вне четырёхугольника)
. Окружность называется
вневписанной
. Центр вневписанной окружности лежит на пересечении шести биссектрис.
Замечание
.
Вписанную
,
описанную
, а также
вневписанную
окружности можно провести не у всякого четырёхугольника. Если противоположные стороны выпуклого четырёхугольника
ABCD
пересекаются в точках
E
и
F
, то условием его внеописанности является любое из двух условий ниже:
Mirko Radic, Zoran Kaliman, Vladimir Kadum.
A condition that a tangential quadrilateral is also a chordal one // Mathematical Communications. — 2007. —
Вып. 12
.
Примечания
Pathan, Alex, and Tony Collyer, "Area properties of triangles revisited, "
89, November 2005, 495—497.
Зетель С.И.
Новая геометрия треугольника. Пособие для учителей. 2-е издание.. —
М.
: Учпедгиз, 1962. — С. 137-138, п. 126, теорема.
College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle. Nathan Altshiller-Court. Mineola, New York: Dover Publication, Inc., 2012. - §b. The tritangent
centers. P.73-78//
от 30 июня 2020 на
Wayback Machine
College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle. Nathan Altshiller-Court. Mineola, New York: Dover Publication, Inc., 2012. - §120. Theorem (Fig. 51). P.74-75//
от 30 июня 2020 на
Wayback Machine
College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle. Nathan Altshiller-Court. Mineola, New York: Dover Publication, Inc., 2012. - §648. Remark. P.273//
от 30 июня 2020 на
Wayback Machine
(неопр.)
.
Матвокс. Энциклопедия математики
. mathvox.ru. Дата обращения: 6 ноября 2018.
7 ноября 2018 года.