Густавсон, Пер
- 1 year ago
- 0
- 0
Гаврии́л Гаврии́лович Густавсо́н ( 22 декабря 1842 [ 3 января 1843 ], Санкт-Петербург — 13 [26] апреля 1908 , там же) — российский химик -органик. Член-корреспондент Петербургской академии наук ( 1894 ).
Происходил из мещан. В 1860 году окончил 3-ю Санкт-Петербургскую гимназию , а в 1865 году — естественное отделение физико-математического факультета Санкт-Петербургского университета , получив степень кандидата наук. Ученик Дмитрия Ивановича Менделеева и Александра Михайловича Бутлерова .
С 1865 по 1875 год работал лаборантом на кафедре технической химии Санкт-Петербургского университета, в 1869 -1875 годах был ассистентом А. М. Бутлерова. В декабре 1873 года в Санкт-Петербургском университете защитил магистерскую диссертацию «Опыт исследования реакций взаимного обмена в отсутствие воды».
С 1875 по 1890 год был профессором (экстраординарным с 1875 по 1879) кафедры органической и агрономической химии в Петровской сельскохозяйственной и лесной академии в Москве. В 1883 году защитил в Москве докторскую диссертацию «Органические соединения в их отношениях к галогенидным солям алюминия».
В 1890 году, после 25 лет академической деятельности, Гавриил Гаврилович принял решение покинуть академию и переехать в Санкт-Петербург, где в 1892—1900 годах читал лекции по органической химии на Высших женских курсах в Санкт-Петербурге.
Первое исследование в данной области, проведенное Густавсоном под руководством Д.И. Менделеева, заключалось в изучениеи реакции брома и йода с фосфорной кислотой . Результаты показали различие в реакции этих элементов: при определенных весовых соотношениях, бром приводит к образованию метафосфорной кислоты (HPO 3 ) и бромида фосфора (III) (PBr 3 ) в то время как при взаимодействии с йодом этих продуктов не образуется.
Также в одной из первых работ "О галоидных соединениях бора", он описал новый и удобный метод получения хлорида бора путем взаимодействия хлорида фосфора(V) с борным ангидридом, а также исследовались реакции хлорида бора с аминами .
Распространив реакцию фосфорного ангидрида на другие галоидные соединения металлоидов неметаллов, ему удалось показать общий характер: при действии фосфорного ангидрида на четыреххлористый углерод образуется в зависимости от относительных количеств либо CO 2 , либо фосген COCl 2 .
Аналогично, при взаимодействии серного ангидрида с хлоридом бора получены сульфурилхлорид и смешанный ангидрид бора и серы .
А при действии серного ангидрида на другие галоидные соединения: четыреххлористый углерод, хлористое олово, треххлористый фосфор - образуется пиросульфурилхлорид. В 1873 году Густавсон выяснил, что при увеличении атомной массы элемента в его хлористом соединении увеличивается количество атомов хлора, которые замещаются на бром и наоборот, при увеличении атомной массы элемента в его бромистом соединении уменьшается количество атомов брома, которые замещаются на хлор.
Исследования в данной области были начаты Г.Г. Густавсоном с целью получения иодида углерода из хлорида углерода путем воздействия иодида металла с низким атомным весом . Для этой цели был использован иодид алюминия , что привело к успешному получению иодида углерода.
В 1877 году он установил каталитическое действие галогенидов алюминия при бромировании ароматических углеводородов, изомеризации и крекинге ацикличных углеводородов . При попытке преобразовать хлористый этилен в бромистый этилен путем воздействия алюминия и брома, было наблюдено выделение бромистого водорода. Для дальнейшего изучения реакции в более чистой форме, было проведено исследование воздействия брома в присутствии бромида алюминия на бензол. Эксперимент показал, что даже незначительные количества бромида алюминия существенно ускоряют замещение водорода бромом. При дальнейшем исследовании воздействия брома в присутствии бромида алюминия на другие ароматические углеводороды было обнаружено, что количество атомов водорода, замещаемых бромом, соответствует количеству ароматических радикалов. В дальнейшем Гавриил Гаврилович обнаружил способность хлорида и бромида алюминия соединяться с ароматическими углеводородами .
В 1890-х годах Густавсон возобновил свои исследования в области реакций галогенидных солей алюминия с углеводородами, что привело к получению значительного объема новых данных, позволяющих более детально определить природу соединений, играющих роль ферментов в реакции Фриделя–Крафтса . Состав этих соединений различается в зависимости от типа ароматического углеводорода (например, для триэтилбензола - Al 2 Cl 6 ·C 6 H 3 (C 2 H 5 ) 3 ). Интересно отметить, что эти соединения, даже при простом встряхивании, способны связывать новые молекулы углеводородов, которые слабо удерживаются и легко обмениваются на другие углеводороды. Особое внимание было уделено изучению желтого кристаллического соединения, полученного из бензола, хлорида алюминия и изопропилхлорида, и имеющего формулу Al 2 Cl 6 ·2[C 6 H 3 (CH(CH 3 ) 2 ) 3 ]HCl. Это соединение разлагается при воздействии воды с образованием триизопропилбензола, а при нагревании распадается на углеводородно-дихлорированный алюминий (Al 2 Cl 6 ·C 8 H 16 ) и газы.
В своей последней публикации, выпущенной незадолго до смерти, он детально описал получение и свойства метилфенилциклопентана.
Исследования Гаврила Гавриловича также были посвящены изучению циклических соединений , включая простейшие циклические углеводороды и их производные. В процессе исследований был разработан и успешно применен новый метод синтеза циклопропана и его гомологов. Этот метод основывается на использовании цинковой пыли и этанола для реакции с дигалогенпроизводными циклических углеводородов . При попытке усовершенствовать метод получения циклопропана, он в 1887 году обнаружил, что при действии цинковой пыли и этанола на бромциклопропан легко и быстро образуется циклопропан . Его целью было получение других простейших циклических соединений, таких как циклопропанол и циклопропен , и для этого он исследовал воздействие хлора на циклопропан в надежде найти общий способ получения этих соединений с использованием моногалогенпроизводного. Однако, при попытке получить хлорциклопропан при помощи цинковой пыли и этанола, образовался аллилхлорид . Эти случаи изомеризации с образованием аллильных соединений являлись первыми свидетельствам таких процессов.
В результате изучения реакций циклопропана с бромом в присутствии бромистого водорода и бромистых металлов привело к интересным результатам было обнаружено, что в отсутствие бромоводородной кислоты бром при действии света присоединяется к циклопропану, образуя бромциклопропан. Однако, в присутствии бромоводородной кислоты и без воздействия света реакция значительно ускоряется, и, помимо основного продукта - бромциклопропана, образуется пропилбромид . При взаимодействии брома с циклопропаном в присутствии бромида алюминия наблюдается равное образование бромциклопропана и пропилбромида.
Гавриил Гаврилович провел исследование с целью расширить возможности реакции между цинковой пылью и этанолом для получения различных углеводородов. Он обнаружил, что данная реакция эффективна в случаях, когда оба атома брома находятся в положении 1,2 или 1,3 относительно друг друга. Применение цинковой пыли и этанола позволило ему в 1888 году совместно с Н.Я. Демьяновым получить и изучить изомер пропина - аллен , а затем диметилциклопропан . Особенности диметилциклопропана проявляются в его высокой энергичности при реакции с бромом, что делает его ближе к соединениям с двойной связью . Гаврил Гаврилович Густавсон объяснил аномальное образование дибромзамещенного тем фактом, что сначала частица бромистого водорода присоединяется к диметиленциклопропану, а затем происходит бромирование. При попытке получить спиропентан при действии цинковой пыли и этанола на тетрабромогидринпентаэритрита образовывался углеводород C5H8, который был подробно изучен и исследован Гавриилом Гаврииловичем. С помощью анализа физических свойств и проведения многочисленных химических превращений, ему удалось определить формулу данного углеводорода как винилциклопропан.
В последние годы Гаврила Гавриловича страдал от сильных ревматических и сердечных болей, а также от расстройства сердечной и сосудистой системы . По совету врачей, он закончил читать высшие женские курсы, ушел в отставку и больше не принимал предложений о занятии должностей, включая предложение стать кандидатом в члены академии наук . После завершения преподавательской деятельности он полностью посвятил себя научным исследованиям. В своей квартире он оборудовал домашнюю лабораторию, где проводил сложные исследования о каталитической роли галогенидных солей алюминия в превращении органических соединений. Умер Гавриил Гаврилович в 1908 году в собственной квартире, куда его привезли после того, как он потерял сознание во время прогулки в первый день Пасхи .
В Москве на здании учебного корпуса № 6 Московской сельскохозяйственной академии имени К. А. Тимирязева ( Тимирязевский проезд , дом № 2), где Г. Г. Густавсон работал с 1875 по 1891 год, установлена мемориальная доска.