Геометрическая оптика
- 1 year ago
- 0
- 0
Геометрическая алгебра — историческое построение алгебры, изложенное во второй книге « Начал » Евклида (III век до н. э.), где операции определялись непосредственно для геометрических величин, а теоремы доказывались геометрическими построениями. Другими словами, алгебра античных математиков не только выросла из проблем геометрии, но и полностью строилась на геометрической основе .
Например, произведение числовых величин определялось как прямоугольник со сторонами и .
Утверждение теоремы Пифагора можно интерпретировать как алгебраическое равенство, а можно как равенство площадей квадратов, построенных на катетах и квадрата, построенного на гипотенузе . Второй способ является примером подхода геометрической алгебры.
Распределительный закон античные математики представляли как равенство площади прямоугольника сумме площадей двух прямоугольников, получаемых разрезанием исходного параллельно одной из сторон (см. рисунок).
В IV веке до н. э. пифагорейцы обнаружили, что диагональ квадрата несоизмерима с его стороной, то есть их отношение ( ) нельзя выразить ни натуральным числом , ни дробью . Однако других числовых объектов, кроме натуральных чисел, античные математики не признавали, даже дробь рассматривалась ими не как число, а как соотношение ( пропорция ) .
Найти выход сумел в IV веке до н. э. Евдокс Книдский — он ввёл, наряду с числами, понятие геометрических величин (длин, площадей, объёмов). Для однородных величин были определены арифметические операции , аналогичные числовым. Теория Евдокса была изложена Евклидом в пятой книге его « Начал », и она использовалась в Европе до XVII века. Теоремы о числах Евклиду приходилось отдельно передоказывать для величин, да и арифметика величин была существенно беднее, чем числовая — хотя бы потому, что касалась только однородных величин .
В Новое время выяснилось, что построение числовой алгебры на основе геометрии было ошибкой. Например, с точки зрения геометрии выражения и даже не имели геометрического истолкования (не определена физическая размерность величины-результата) и поэтому не имели смысла; то же относится к отрицательным числам .
Начиная с «Геометрии» Декарта (1637), европейские математики пошли иным путём — они создали аналитическую геометрию , которая вместо сведе́ния алгебры к геометрии выполняет сведе́ние геометрии к алгебре, и этот путь оказался намного более плодотворным. Чтобы сделать это возможным, Декарт расширил понятие числа — оно вобрало все вещественные числа , включая иррациональные , и является отвлечённым , то есть отделено от геометрии . Отдельное понятие геометрической величины тогда становится излишним. Алгебраизация геометрии позволила, кроме того, обнаружить общие черты в геометрических задачах, которые казались совершенно независимыми .
Некоторые историки существование геометрической алгебры подвергли сомнению. Например, Шабтай Унгуру считал, что поскольку история математики писалась не историками, а математиками, они в своих реконструкциях исходили из того, что математика в своей сущности неизменна, и поэтому при изложении истории они свободно употребляли идеи и термины современной математики.