Interested Article - Сильное псевдопростое число

Вероятно простое число — это число, которое проходит тест простоты . Сильное вероятно простое число — это число, которое проходит сильную версию теста простоты. Сильное псевдопростое число — это составное число , которое проходит сильную версию теста простоты.

Все простые числа проходят этот тест, но небольшая доля составных чисел также этот тест проходит, что делает их « ложно простыми ».

В отличие от псевдопростых чисел Ферма , для которых существуют числа, псевдопростые по всем взаимно простым основаниям ( числа Кармайкла ), не существует составных чисел, сильных псевдопростых по всем основаниям.

Формальное определение

Формально, нечётное составное число n = d • 2 s + 1 с нечётным d называется сильным псевдопростым числом (Ферма) по основанию a , если выполняется одно из условий:

или

для некоторого

(Если число n удовлетворяет вышеприведённым условиям и мы не знаем, простое оно или нет, более точно называть его сильным вероятно простым по основанию a . Если же мы знаем, что n не простое, можно употреблять термин сильное псевдопростое число.)

Определение тривиально выполняется, если a ≡ ±1 mod n , так что эти тривиальные случаи часто исключаются.

Ричард Гай ошибочно дал определение только с первым условием, но ему удовлетворяют не все простые числа .

Свойства сильных псевдопростых чисел

Сильное псевдопростое число по основанию a всегда является , и псевдопростым Ферма по этому основанию, но не все псевдопростые Эйлера и Ферма являются сильными псевдопростыми. Числа Кармайкла могут быть сильными псевдопростыми по некоторым основаниям, например, 561 является сильными псевдопростым по основанию 50, но не по всем базисам.

Составное число n является сильным псевдопростым максимум четверти всех оснований, меньших n . Таким образом, нет «сильных чисел Кармайкла», чисел, которые являются сильными псевдопростыми для всех оснований. Следовательно, если задано случайное основание, вероятность, что число будет сильным псевдопростым по этому основанию, не превосходит 1/4, что используется в широко распространённом тесте Миллера — Рабина . Тем не менее, Арно привёл 397-значное составное число, являющееся сильным псевдопростым по любому основанию, меньшему 307. Один из способов уберечься от объявления таких чисел вероятно простыми заключается в комбинации теста на сильное возможно простое число с тестом на псевдопростое число Люка , как в тесте Бейли — Померанца — Селфриджа — Уогстаффа .

Существует бесконечно много сильных псевдопростых по любому конкретному основанию .

Примеры

Первые сильные псевдопростые по основанию 2

2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, 52633, 65281, 74665, 80581, 85489, 88357, 90751, ... (последовательность в OEIS ).

По основанию 3

121, 703, 1891, 3281, 8401, 8911, 10585, 12403, 16531, 18721, 19345, 23521, 31621, 44287, 47197, 55969, 63139, 74593, 79003, 82513, 87913, 88573, 97567, ... (последовательность в OEIS ).

По основанию 5

781, 1541, 5461, 5611, 7813, 13021, 14981, 15751, 24211, 25351, 29539, 38081, 40501, 44801, 53971, 79381, ... (последовательность в OEIS ).

По основанию 4 см. , а по основаниям от 6 до 100 см. последовательности от до .

Если проверять вышеприведённые условия по нескольким основаниям, получаем более мощный тест на простоту, чем при использовании теста по одному основанию. Например, существует только 13 чисел, меньших 25•10 9 , являющихся сильными псевдопростыми по основаниям 2, 3 и 5 одновременно. Они перечислены в таблице 7 в статье Померанса и Селфриджа . Наименьшее такое число — 25326001. Это означает, что при n меньшем 25326001, если n является сильным возможно простым число по основаниям 2, 3 и 5, число n является простым.

Число 3825123056546413051 является наименьшим числом, одновременно являющимся сильным псевдопростым по 9 основаниям 2, 3, 5, 7, 11, 13, 17, 19 и 23 . Так что при n меньшем 3825123056546413051, если n является сильным вероятно простым по этим 9 основаниям, то n является простым.

При осторожном выборе основания, не являющегося простым, можно построить даже лучшие тесты. Например, не существует составных чисел , сильных псевдопростых по всем семи основаниям 2, 325, 9375, 28178, 450775, 9780504 и 1795265022 .

Наименьшее сильное псевдопростое по основанию n

n Наименьшее n Наименьшее n Наименьшее n Наименьшее
1 9 33 545 65 33 97 49
2 2047 34 33 66 65 98 9
3 121 35 9 67 33 99 25
4 341 36 35 68 25 100 9
5 781 37 9 69 35 101 25
6 217 38 39 70 69 102 133
7 25 39 133 71 9 103 51
8 9 40 39 72 85 104 15
9 91 41 21 73 9 105 451
10 9 42 451 74 15 106 15
11 133 43 21 75 91 107 9
12 91 44 9 76 15 108 91
13 85 45 481 77 39 109 9
14 15 46 9 78 77 110 111
15 1687 47 65 79 39 111 55
16 15 48 49 80 9 112 65
17 9 49 25 81 91 113 57
18 25 50 49 82 9 114 115
19 9 51 25 83 21 115 57
20 21 52 51 84 85 116 9
21 221 53 9 85 21 117 49
22 21 54 55 86 85 118 9
23 169 55 9 87 247 119 15
24 25 56 55 88 87 120 91
25 217 57 25 89 9 121 15
26 9 58 57 90 91 122 65
27 121 59 15 91 9 123 85
28 9 60 481 92 91 124 25
29 15 61 15 93 25 125 9
30 49 62 9 94 93 126 25
31 15 63 529 95 1891 127 9
32 25 64 9 96 95 128 49

Примечания

  1. , с. 27-30.
  2. , с. 1003–1026.
  3. , с. 97-108.
  4. , с. 128-138.
  5. , с. 151–161.
  6. , с. 2085–2097.
  7. Yupeng Jiang, Yingpu Deng (2012). "Strong pseudoprimes to the first 9 prime bases". arXiv : [ ].
  8. . Дата обращения: 3 июня 2015. 11 октября 2015 года.

Литература

  • Richard K. Guy . §A12 in Unsolved Problems in Number Theory // Pseudoprimes. Euler Pseudoprimes. Strong Pseudoprimes. — 2nd. — New York: Springer-Verlag, 1994.
  • Carl Pomerance , John L. Selfridge, Samuel S. Wagstaff, Jr. // Mathematics of Computation. — 1980. — Июль ( т. 35 , вып. 151 ). — doi : .
  • Louis Monier. Evaluation and Comparison of Two Efficient Probabilistic Primality Testing Algorithms // Theoretical Computer Science. — 1980. — Т. 12 . — doi : .
  • Michael O. Rabin . Probabilistic Algorithm for Testing Primality // Journal of Number Theory. — 1980. — Вып. 12 .
  • F. Arnault. // Journal of Symbolic Computation. — 1995. — Август ( т. 20 , вып. 2 ). — doi : .
  • Zhenxiang Zhang, Min Tang. {{{заглавие}}} // Mathematics of Computation. — 2003. — Т. 72 , вып. 244 . — doi : .
Источник —

Same as Сильное псевдопростое число