Сильное взаимодействие
- 1 year ago
- 0
- 0
Вероятно простое число — это число, которое проходит тест простоты . Сильное вероятно простое число — это число, которое проходит сильную версию теста простоты. Сильное псевдопростое число — это составное число , которое проходит сильную версию теста простоты.
Все простые числа проходят этот тест, но небольшая доля составных чисел также этот тест проходит, что делает их « ложно простыми ».
В отличие от псевдопростых чисел Ферма , для которых существуют числа, псевдопростые по всем взаимно простым основаниям ( числа Кармайкла ), не существует составных чисел, сильных псевдопростых по всем основаниям.
Формально, нечётное составное число n = d • 2 s + 1 с нечётным d называется сильным псевдопростым числом (Ферма) по основанию a , если выполняется одно из условий:
или
(Если число n удовлетворяет вышеприведённым условиям и мы не знаем, простое оно или нет, более точно называть его сильным вероятно простым по основанию a . Если же мы знаем, что n не простое, можно употреблять термин сильное псевдопростое число.)
Определение тривиально выполняется, если a ≡ ±1 mod n , так что эти тривиальные случаи часто исключаются.
Ричард Гай ошибочно дал определение только с первым условием, но ему удовлетворяют не все простые числа .
Сильное псевдопростое число по основанию a всегда является , и псевдопростым Ферма по этому основанию, но не все псевдопростые Эйлера и Ферма являются сильными псевдопростыми. Числа Кармайкла могут быть сильными псевдопростыми по некоторым основаниям, например, 561 является сильными псевдопростым по основанию 50, но не по всем базисам.
Составное число n является сильным псевдопростым максимум четверти всех оснований, меньших n . Таким образом, нет «сильных чисел Кармайкла», чисел, которые являются сильными псевдопростыми для всех оснований. Следовательно, если задано случайное основание, вероятность, что число будет сильным псевдопростым по этому основанию, не превосходит 1/4, что используется в широко распространённом тесте Миллера — Рабина . Тем не менее, Арно привёл 397-значное составное число, являющееся сильным псевдопростым по любому основанию, меньшему 307. Один из способов уберечься от объявления таких чисел вероятно простыми заключается в комбинации теста на сильное возможно простое число с тестом на псевдопростое число Люка , как в тесте Бейли — Померанца — Селфриджа — Уогстаффа .
Существует бесконечно много сильных псевдопростых по любому конкретному основанию .
Первые сильные псевдопростые по основанию 2
По основанию 3
По основанию 5
По основанию 4 см. , а по основаниям от 6 до 100 см. последовательности от до .
Если проверять вышеприведённые условия по нескольким основаниям, получаем более мощный тест на простоту, чем при использовании теста по одному основанию. Например, существует только 13 чисел, меньших 25•10 9 , являющихся сильными псевдопростыми по основаниям 2, 3 и 5 одновременно. Они перечислены в таблице 7 в статье Померанса и Селфриджа . Наименьшее такое число — 25326001. Это означает, что при n меньшем 25326001, если n является сильным возможно простым число по основаниям 2, 3 и 5, число n является простым.
Число 3825123056546413051 является наименьшим числом, одновременно являющимся сильным псевдопростым по 9 основаниям 2, 3, 5, 7, 11, 13, 17, 19 и 23 . Так что при n меньшем 3825123056546413051, если n является сильным вероятно простым по этим 9 основаниям, то n является простым.
При осторожном выборе основания, не являющегося простым, можно построить даже лучшие тесты. Например, не существует составных чисел , сильных псевдопростых по всем семи основаниям 2, 325, 9375, 28178, 450775, 9780504 и 1795265022 .
n | Наименьшее | n | Наименьшее | n | Наименьшее | n | Наименьшее |
1 | 9 | 33 | 545 | 65 | 33 | 97 | 49 |
2 | 2047 | 34 | 33 | 66 | 65 | 98 | 9 |
3 | 121 | 35 | 9 | 67 | 33 | 99 | 25 |
4 | 341 | 36 | 35 | 68 | 25 | 100 | 9 |
5 | 781 | 37 | 9 | 69 | 35 | 101 | 25 |
6 | 217 | 38 | 39 | 70 | 69 | 102 | 133 |
7 | 25 | 39 | 133 | 71 | 9 | 103 | 51 |
8 | 9 | 40 | 39 | 72 | 85 | 104 | 15 |
9 | 91 | 41 | 21 | 73 | 9 | 105 | 451 |
10 | 9 | 42 | 451 | 74 | 15 | 106 | 15 |
11 | 133 | 43 | 21 | 75 | 91 | 107 | 9 |
12 | 91 | 44 | 9 | 76 | 15 | 108 | 91 |
13 | 85 | 45 | 481 | 77 | 39 | 109 | 9 |
14 | 15 | 46 | 9 | 78 | 77 | 110 | 111 |
15 | 1687 | 47 | 65 | 79 | 39 | 111 | 55 |
16 | 15 | 48 | 49 | 80 | 9 | 112 | 65 |
17 | 9 | 49 | 25 | 81 | 91 | 113 | 57 |
18 | 25 | 50 | 49 | 82 | 9 | 114 | 115 |
19 | 9 | 51 | 25 | 83 | 21 | 115 | 57 |
20 | 21 | 52 | 51 | 84 | 85 | 116 | 9 |
21 | 221 | 53 | 9 | 85 | 21 | 117 | 49 |
22 | 21 | 54 | 55 | 86 | 85 | 118 | 9 |
23 | 169 | 55 | 9 | 87 | 247 | 119 | 15 |
24 | 25 | 56 | 55 | 88 | 87 | 120 | 91 |
25 | 217 | 57 | 25 | 89 | 9 | 121 | 15 |
26 | 9 | 58 | 57 | 90 | 91 | 122 | 65 |
27 | 121 | 59 | 15 | 91 | 9 | 123 | 85 |
28 | 9 | 60 | 481 | 92 | 91 | 124 | 25 |
29 | 15 | 61 | 15 | 93 | 25 | 125 | 9 |
30 | 49 | 62 | 9 | 94 | 93 | 126 | 25 |
31 | 15 | 63 | 529 | 95 | 1891 | 127 | 9 |
32 | 25 | 64 | 9 | 96 | 95 | 128 | 49 |