Ветроэнергетика
- 1 year ago
- 0
- 0
Ветроэнергетика США является наиболее быстро развивающейся отраслью возобновляемой энергетики в стране . С января по декабрь 2020 года 337,5 тераватт-часов было произведено ветровой энергией, или 8,42% всей выработанной электроэнергии в Соединенных Штатах. В 2019 году ветроэнергетика превзошла гидроэнергетику как крупнейший возобновляемый источник энергии, производимый в США. По состоянию на январь 2021 года общая установленная мощность ветроэнергетики в Соединенных Штатах составляла 122 478 МВт, уступая по этому показателю лишь Китаю и ЕС. В 2022 году мощность ветроэнергетики составляла 140 862 МВт .
Pacific Northwest Laboratory в 2001 году оценила потенциал ветроэнергетики 20 штатов США. Из энергии ветра третьего класса и выше, на доступных землях, 20 штатов могут ежегодно производить до 10 777 млрд кВт·ч электроэнергии в год, что в три раза больше потребления США в 2001 году.
Наибольшим потенциалом обладает штат Северная Дакота , которую называют «Саудовской Аравией энергии ветра».
В 2008 году Департамент энергетики США (DoE) опубликовал исследование: 20% Wind energy. В исследовании DoE прогнозирует, что к 2030 году США из энергии ветра будут вырабатывать 20 % электроэнергии, производимой в стране .
Согласно исследованию, проведённому National Renewable Energy Laboratory (NREL) в 2010 году, потенциал офшорной ветроэнергетики оценивается в 4150 ГВт, тогда как в 2008 году суммарная мощность всей энергетики США составляла 1010 ГВт .
Крупнейшие по мощности ветряные фермы США | |||
---|---|---|---|
Название | Штат |
Мощность,
МВт |
|
Alta Wind Energy Center | Калифорния | 1547 | |
Roscoe Wind Farm | Техас | 781 | |
Horse Hollow Wind Energy Center | Техас | 736 | |
Tehachapi Pass Wind Farm | Калифорния | 690 | |
Capricorn Ridge Wind Farm | Техас | 662 | |
San Gorgonio Pass Wind Farm | Калифорния | 619 | |
Fowler Ridge Wind Farm | Индиана | 600 | |
Sweetwater Wind Farm, | Техас | 585 | |
Altamont Pass Wind Farm | Калифорния | 576 |
Таблица: Крупнейшие ветроэлектростанции США в 2008-2012 гг
Ветряные электростанции к началу 2014 года были построены в 34 штатах США.
Штаты США с крупнейшими
установленными ветряными мощностями |
||
---|---|---|
Место | Штат |
Мощность,
МВт |
1 | Техас | 14 098 |
2 | Калифорния | 5 917 |
3 | Айова | 5 688 |
4 | Оклахома | 3 782 |
5 | Иллинойс | 3 568 |
6 | Орегон | 3 153 |
7 | Вашингтон | 3 075 |
8 | Миннесота | 3 035 |
9 | Канзас | 2 967 |
10 | Колорадо | 2 593 |
Всего | 65 879 |
Турбины занимают только 1 % от всей территории ветряной фермы. На 99 % площади фермы возможно заниматься сельским хозяйством или другой деятельностью. Фермеры США получают ежегодно $3000 — $5000 арендных платежей за одну ветряную турбину, построенную на их участке. Некоторые фермы от сдачи земли в аренду ветряным электростанциям получают доходов больше, чем от основной деятельности.
Крупнейшие поставщики ветрогенераторов
на рынок США в 2007 году |
||||
---|---|---|---|---|
Место | Название | Страна |
Число
турбин, шт |
Общая
мощность, МВт |
1 | GE Energy | США | 1561 | 2342 |
2 | Vestas | Дания | 537 | 953 |
3 | Siemens | Германия | 375 | 863 |
4 | Gamesa | Испания | 242 | 484 |
5 | Mitsubishi Power Systems | Япония | 356 | 356 |
6 | Suzlon Energy | Индия | 97 | 197 |
Всего | 3188 | 5244 |
В 2008 году в США было построено 55 новых заводов по производству оборудования для ветроэнергетики. Доля оборудования, произведённого в США, выросла с 30% в 2005 году до 50% в 2008 году .
Интерес к офшорным ветряным электростанциям вызван тем, что на море ветра дуют с наибольшей силой. Кроме того, расположение ВЭУ в море решило бы проблему близости к потребителю, поскольку большинство крупных американских городов расположено именно на побережье. Однако, стоимость таких проектов значительно выше, поэтому прибрежные и морские ветряные электростанции развиваются в США достаточно медленно. Первую в США офшорную ветряную электростанцию планировалось построить в Мексиканском заливе . Первая очередь электростанции должна была составить 250 МВт. Первое разрешение на строительство было выдано в октябре 2006 года .
В конце 2007 года в США рассматривались проекты строительства 16 офшорных ветряных электростанций.
07 февраля 2011 г. министр Внутренних дел Кен Салазар и министр энергетики Стивен Чу в контексте совместного плана («National Offshore Wind Strategy» ) по ускорению развития офшорной энергетики объявили совместный план работы. В первую очередь, это дополнительное финансирование на сумму $50,5 млн. для проектов оффшорных ветряных энергетических установок по трем направлениям: развитие технологий (инновационные конструкции ветровых турбин и оборудования), устранение рыночных барьеров (базовые и целевые экономические исследования по снижению рисков, созданию цепей поставок, планированию, оптимизации инфраструктуры и пр.) и создание трансмиссии следующего поколения. Также были установлены несколько приоритетных зон для размещения ВЭУ в районе среднеатлантических штатов (площадью 122 кв. морские мили у берегов штата Делавэр , площадью 207 у штата Мэриленд , площадью 417 у Нью-Джерси и площадью 165 у Вирджинии ). Позже было запланировано определить такие же зоны у штатов Массачусетс и Род-Айленд , а также у берегов Северной Каролины . Внедрение экологически чистых, возобновляемых источников при помощи офшорной ветровой энергии должно стать средством достижения цели, поставленной президентом : к 2035 году производить 80% электроэнергии из экологически чистых источников энергии. В действительности в Министерстве Внутренних дел США предполагают, что территории у берегов Новой Англии и Средне-Атлантических штатов располагают ветряным ресурсным потенциалом в более чем 90 000 МВт . План министров ориентирован на решение трех ключевых задач: сравнительно высокая стоимость оффшорной ветровой энергетики, технические проблемы при установке и эксплуатации и отсутствие у американских компаний опыта работы с подобными проектами. Строительство же первой в США прибрежной ветряной электростанции мощностью 420 МВт, получившей название Кейп Винд ( ), планируется в районе мыса Кейп-Код , штат Массачусетс. Сроки начала строительства намечены на 2013 год . .
Работа ветряных электростанций в 2007 году позволила предотвратить выброс в атмосферу около 28 млн тонн СО 2 .
Ветряные электростанции , в отличие от традиционных тепловых электростанций , производят электроэнергию без использования воды, что позволяет сократить эксплуатацию водных ресурсов.
Ветряные электростанции производят электроэнергию без сжигания традиционных видов топлива . Это позволяет сократить спрос и цены на топлива.
Одна ветряная турбина мощностью 1 МВт за 20 лет эксплуатации позволит сэкономить около 29 тыс. тонн угля , или 92 тыс. баррелей нефти .
Средняя цена электроэнергии в США в 2007 году выросла до $0,0918 за кВт·ч.
По данным Lawrence Berkeley National Laboratory ( LBNL ) 12 новых ветряных электростанций, построенных в США в 2007 году, продавали свою электроэнергию по ценам от $0,025 до $0,064 за кВт·ч. Из них шесть новых электростанций продавали свою электроэнергию по ценам менее $0,03 за кВт·ч.
В начале 1980-х годов стоимость ветряного электричества в США составляла $0,38 за кВт·ч. При этом среди всех штатов в Техасе развитие рассматриваемой отрасли связано с наименьшими затратами, а в Калифорнии и Новой Англии, напротив, с наибольшими.
Новая ветряная электростанция получает (но не субсидии ) в размере $0,015 за каждый произведённый кВт·ч электроэнергии. Налоговая льгота действует в течение 10 лет.
Государство субсидирует только исследовательские работы и производство оборудования для ветряной энергетики.
По данным Департамента энергетики США (DoE) с 1950 года по 1997 год правительство США субсидировало энергетику на $500 млрд (в ценах 2004 года ). В 2003 году всего около 1 % субсидий, выделенных энергетике США, было предназначено для ветряной энергетики.
По данным AWEA в 2004 году в США было установлено около 30 МВт малых ветрогенераторов. В 2006 году было продано 6807 малых ветряных турбин. Их суммарная мощность 17 543 кВт. Их суммарная стоимость $56 082 850 (примерно $3200 за кВт мощности).
В 2009 году было продано 20,3 МВт. малых ветрогенераторов. Суммарные мощности малой ветроэнергетики превысили 100 МВт. В США 95 компаний производили оборудование для малой ветроэнергетики . В 2010 году продажи увеличились до 25,6 МВт. Размер рынка малой ветроэнергетики составил $139 млн .
В 2006 году 51 % малых ветрогенераторов было установлено в сельских домах, 19 % на сельскохозяйственных фермах, 10 % на предприятиях малого бизнеса, 10 % в школах и общественных зданиях.
Наиболее перспективными регионами для развития малой ветроэнергетики считаются регионы со стоимостью электроэнергии более $0,1 за кВт·ч. Себестоимость электроэнергии, производимой малыми ветрогенераторами в 2006 г. в США составляла $0,10 —$0,11 за кВт·ч. AWEA ожидает, что в ближайшие 5 лет себестоимость снизится до $0,07 за кВт·ч.
AWEA прогнозирует, что к 2020 году суммарная мощность малой ветряной энергетики США вырастет до 50 тыс. МВт, что составит около 3 % от суммарных мощностей страны. Ветряные турбины будут установлены в 15 млн домах и в 1 млн предприятий малого бизнеса. В индустрии малой ветроэнергетики будут заняты 10 тыс. человек. Они ежегодно будут производить продукции и услуг на сумму более чем $1 млрд.
В 2008 году в ветряной энергетике США было занято 85 тысяч человек. За 2008 год было создано 35 тысяч новых рабочих мест. В строительстве ветряных электростанций заняты около 8 тысяч рабочих .
Год | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
---|---|---|---|---|---|---|---|---|---|---|
Установленная мощность, МВт | 2539 | 4232 | 4687 | 6350 | 6723 | 9147 | 11 575 | 16 907 | 25 410 | 34 863 |
Выработка электроэнергии, ГВт·ч | 5593 | 6737 | 10 354 | 11 187 | 14 144 | 17 811 | 26 589 | 34 450 | 55 363 | 73 886 |
Коэффициент использования мощности , % | 25,1 | 18,2 | 25,2 | 20,1 | 24,0 | 22,2 | 26,2 | 23,3 | 24,9 | 24,2 |
Доля ветроэнергетики в производстве электроэнергии, % | 1,9 | |||||||||
Год | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
Установленная мощность, МВт | 40 267 | 46 916 | 60 005 | 61 107 | 65 880 | 74 471 | 82 171 | 89 078 | 96 487 | 105 583 |
Выработка электроэнергии, ГВт·ч | 94 652 | 120 177 | 140 822 | 167 840 | 181 655 | 190 927 | 226 993 | 254 303 | 274 952 | 300 071 |
Коэффициент использования мощности , % | 26,8 | 29,2 | 26,8 | 31,4 | 31,5 | 29,3 | 31,5 | 32,6 | 32,5 | 32,4 |
Доля ветроэнергетики в производстве электроэнергии, % | 2,3 | 2,9 | 3,5 | 4,1 | 4,4 | 4,7 | 5,5 | 6,3 | 6,5 | 7,1 |
Год | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 |
Установленная мощность, МВт | 122 478 | |||||||||
Выработка электроэнергии, ГВт·ч | 337 510 | |||||||||
Коэффициент использования мощности , % | 31,5 | |||||||||
Доля ветроэнергетики в производстве электроэнергии, % | 9,0 |