Эрнандес, Педро Пабло
- 1 year ago
- 0
- 0
Пентеракт | |
---|---|
Тип | Правильный пятимерный политоп |
Символ Шлефли | {4,3,3,3} |
4-мерных ячеек | 10 |
Ячеек | 40 |
Граней | 80 |
Рёбер | 80 |
Вершин | 32 |
Вершинная фигура | 5-ячейник |
Двойственный политоп | 5-ортоплекс |
Пентеракт ( англ. penteract ) — пятимерный гиперкуб , аналог куба в пятимерном пространстве. Пентеракт имеет 32 вершины, 80 рёбер, 80 граней , 40 ячеек ( кубов ) и 10 4-мерных ячеек ( тессерактов ).
Слово «пентеракт» возникло путём комбинирования слов « тессеракт » и «пента» (от греч. πέντε — «пять»). Также может именоваться 5-гиперкуб , дека-5-топ или декатерон .
Двойственное пентеракту тело - 5-ортоплекс , пятимерный аналог октаэдра .
Если применить к пентеракту альтернацию (удаление чередующихся вершин), можно получить однородный пятимерный многогранник, называемый полупентеракт , который является представителем семейства полугиперкубов .
Пентеракт можно рассматривать как замощение 4-мерной гиперсферы тессерактами .
В прямоугольной системе координат пентеракт с длиной ребра равной 2 определяется как выпуклая оболочка точек (±1,±1,±1,±1,±1).
Пятимерный
гиперобъём
(
мера
) пентеракта со стороной длиной
a
рассчитывается по формуле:
Четырёхмерный гиперобъём гиперповерхности пентеракта можно найти по другой формуле:
Радиус описанной гиперсферы:
Радиус вписанной гиперсферы:
Пентеракт можно визуализировать либо параллельным, либо центральным проецированием. В первом случае обычно применяется косоугольная параллельная проекция, которая представляет собой 2 равных гиперкуба размерности n-1, один из которых может быть получен в результате параллельного переноса второго (для пентеракта это 2 тессеракта ), вершины которых попарно соединены. Во втором случае обычно используют диаграмму Шлегеля , которая выглядит как гиперкуб размерности n-1, вложенный в гиперкуб той же размерности, у которых вершины также попарно соединены (для пентеракта проекция представляет собой тессеракт , вложенный в другой тессеракт).
Также применяются и другие способы проецирования.
Основные выпуклые правильные и однородные политопы в размерностях 2—10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A n | B n | I₂(p) / D n | E₆ / / E₈ / F₄ / G₂ | |||||||||
Правильный многоугольник | Правильный треугольник | Квадрат |
Правильный
p-угольник |
Правильный шестиугольник | Правильный пятиугольник | |||||||
Однородный многогранник | Правильный тетраэдр | Правильный октаэдр • Куб | Полукуб | Правильный додекаэдр • Правильный икосаэдр | ||||||||
Пятиячейник | 16-ячейник • Тессеракт | Полутессеракт | 24-ячейник | 120-ячейник • 600-ячейник | ||||||||
Правильный 5-симплекс | 5-ортоплекс • | 5-полугиперкуб | ||||||||||
Правильный 6-симплекс | 6-ортоплекс • 6-гиперкуб | • | ||||||||||
Правильный 7-симплекс | • 7-гиперкуб | • • | ||||||||||
Правильный 8-симплекс | • 8-гиперкуб | • • | ||||||||||
Правильный 9-симплекс | • 9-гиперкуб | |||||||||||
Правильный 10-симплекс | • 10-гиперкуб | |||||||||||
Однородный n - политоп | Правильный n - симплекс | n - ортоплекс • n - гиперкуб | n - полугиперкуб | • • | n - пятиугольный многогранник | |||||||
Темы: Семейства политопов • Правильные политопы • Список правильных политопов и их соединений |