Interested Article - Эннеракт
- 2021-06-28
- 1
Эннеракт | |
---|---|
Тип | Правильный девятимерный политоп |
Символ Шлефли | {4,3,3,3,3,3,3,3} |
8-мерных ячеек | 18 |
7-мерных ячеек | 144 |
6-мерных ячеек | 672 |
5-мерных ячеек | 2016 |
4-мерных ячеек | 4032 |
Ячеек | 5376 |
Граней | 4608 |
Рёбер | 2304 |
Вершин | 512 |
Вершинная фигура | Правильный 8-симплекс |
Двойственный политоп |
Эннеракт , или 9-гиперкуб , или октадекаиоттон — это девятимерный гиперкуб , аналог куба в девятимерном пространстве . Определяется как выпуклая оболочка 512 точек .
Связанные политопы
Двойственное эннеракту тело - , девятимерный аналог октаэдра .
Если применить к эннеракту альтернацию (удаление чередующихся вершин), можно получить однородный девятимерный многогранник, называемый , который является представителем семейства полугиперкубов .
Свойства
Если у эннеракта — длина ребра , то существуют следующие формулы для вычисления основных характеристик тела:
9-
гиперобъём
:
8-
гиперобъём
гиперповерхности:
Радиус описанной гиперсферы:
Радиус вписанной гиперсферы:
Состав
Эннеракт состоит из:
- 18 октерактов
- 144 гептеракта
- 672 гексеракта
- 2016 пентерактов
- 4032 тессеракта
- 5376 кубов или ячеек
- 4608 квадратов или граней
- 2304 отрезка или ребра
- 512 точек или вершин
Визуализация
Эннеракт можно визуализировать либо параллельным, либо центральным проецированием. В первом случае обычно применяется косоугольная параллельная проекция, которая представляет собой 2 равных гиперкуба размерности n-1, один из которых может быть получен в результате параллельного переноса второго (для эннеракта это 2 октеракта ), вершины которых попарно соединены. Во втором случае обычно используют диаграмму Шлегеля , которая выглядит как гиперкуб размерности n-1, вложенный в гиперкуб той же размерности, у которых вершины также попарно соединены (для эннеракта проекция представляет собой октеракт , вложенный в другой октеракт).
Также применяются и другие способы проецирования.
Ссылки
- Коксестер, Правильные политопы , (третье издание, 1973), Dover edition, ISBN 0-486-61480-8
Основные выпуклые правильные и однородные политопы в размерностях 2—10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A n | B n | I₂(p) / D n | E₆ / / E₈ / F₄ / G₂ | |||||||||
Правильный многоугольник | Правильный треугольник | Квадрат |
Правильный
p-угольник |
Правильный шестиугольник | Правильный пятиугольник | |||||||
Однородный многогранник | Правильный тетраэдр | Правильный октаэдр • Куб | Полукуб | Правильный додекаэдр • Правильный икосаэдр | ||||||||
Пятиячейник | 16-ячейник • Тессеракт | Полутессеракт | 24-ячейник | 120-ячейник • 600-ячейник | ||||||||
Правильный 5-симплекс | 5-ортоплекс • 5-гиперкуб | 5-полугиперкуб | ||||||||||
Правильный 6-симплекс | 6-ортоплекс • 6-гиперкуб | • | ||||||||||
Правильный 7-симплекс | • 7-гиперкуб | • • | ||||||||||
Правильный 8-симплекс | • 8-гиперкуб | • • | ||||||||||
Правильный 9-симплекс | • 9-гиперкуб | |||||||||||
Правильный 10-симплекс | • 10-гиперкуб | |||||||||||
Однородный n - политоп | Правильный n - симплекс | n - ортоплекс • n - гиперкуб | n - полугиперкуб | • • | n - пятиугольный многогранник | |||||||
Темы: Семейства политопов • Правильные политопы • Список правильных политопов и их соединений |
- 2021-06-28
- 1