Interested Article - Икосододекаэдр

Икосододека́эдр полуправильный многогранник (архимедово тело) с 32 гранями, составленный из 20 правильных треугольников и 12 правильных пятиугольников .

В каждой из его 30 одинаковых вершин сходятся две пятиугольных грани и две треугольных. Телесный угол при вершине равен

Икосододекаэдр имеет 60 рёбер равной длины. Двугранный угол при любом ребре одинаков и равен

Икосододекаэдр можно получить из икосаэдра , «срезав» с него 12 правильных пятиугольных пирамид ; либо из додекаэдра , «срезав» с него 20 правильных треугольных пирамид; либо как пересечение имеющих общий центр икосаэдра и додекаэдра.

Иллюстрация Леонардо да Винчи к трактату Луки Пачоли « О божественной пропорции » (1509)

В координатах

Икосододекаэдр с длиной ребра можно расположить в декартовой системе координат так, чтобы координаты его вершин были всевозможными циклическими перестановками наборов чисел

где — отношение золотого сечения .

Начало координат будет при этом центром симметрии многогранника, а также центром его описанной и полувписанной сфер .

Метрические характеристики

Если икосододекаэдр имеет ребро длины , его площадь поверхности и объём выражаются как

Радиус описанной сферы (проходящей через все вершины многогранника) при этом будет равен

радиус полувписанной сферы (касающейся всех рёбер в их серединах) —

Вписать в икосододекаэдр сферу — так, чтобы она касалась всех граней, — невозможно. Радиус наибольшей сферы, которую можно поместить внутри икосододекаэдра с ребром (она будет касаться только всех пятиугольных граней в их центрах), равен

Расстояние от центра многогранника до любой треугольной грани превосходит и равно

Примечания

  1. , с. 20, 36.
  2. , с. 437, 435.
  3. , с. 183.

Ссылки

  • Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .

Литература

Источник —

Same as Икосододекаэдр