Interested Article - Трижды отсечённый икосаэдр
![](/images/005/640/5640976/1.jpg?rand=531659)
Три́жды отсечённый икоса́эдр — один из многогранников Джонсона ( J 63 , по Залгаллеру — М 7 ).
Составлен из 8 граней: 5 правильных треугольников и 3 правильных пятиугольников . Каждая пятиугольная грань окружена двумя пятиугольными и тремя треугольными; среди треугольных 1 грань окружена тремя пятиугольными, 1 грань — тремя треугольными, остальные 3 — двумя пятиугольными и треугольной.
Имеет 15 рёбер одинаковой длины. 3 ребра располагаются между двумя пятиугольными гранями, 3 ребра — между двумя треугольными, остальные 9 — между треугольной и пятиугольной.
У трижды отсечённого икосаэдра 9 вершин. В 6 вершинах (расположенных как вершины правильной усечённой треугольной пирамиды ) сходятся две пятиугольных грани и одна треугольная; в остальных 3 (расположенных как вершины правильного треугольника) — одна пятиугольная и три треугольных.
Трижды отсечённый икосаэдр можно получить из икосаэдра , отсекши от того три правильных пятиугольных пирамиды ( J 2 ). Вершины полученного многогранника — 9 из 12 вершин икосаэдра, рёбра — 15 из 30 рёбер икосаэдра; отсюда ясно, что у трижды отсечённого икосаэдра тоже существуют описанная и полувписанная сферы , причём они совпадают с описанной и полувписанной сферами исходного икосаэдра.
Трижды отсечённый икосаэдр является вершинной фигурой курносого двадцатичетырёхъячейника .
Метрические характеристики
Если трижды отсечённый икосаэдр имеет ребро длины
, его площадь поверхности и объём выражаются как
Радиус описанной сферы (проходящей через все вершины многогранника) при этом будет равен
радиус полувписанной сферы (касающейся всех рёбер в их серединах) —
Примечания
- Залгаллер В. А. / Зап. научн. сем. ЛОМИ, 1967. — Т. 2. — Cтр. 22.
Ссылки
- Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .
- Tags: