Interested Article - Электронный захват

Ядерная физика
Атомное ядро · Радиоактивный распад · Ядерная реакция · Термоядерная реакция
См. также: Портал:Физика

Электро́нный захва́т , e -захват — один из видов бета-распада атомных ядер. При электронном захвате один из протонов ядра захватывает орбитальный электрон и превращается в нейтрон , испуская электронное нейтрино . Заряд ядра при этом уменьшается на единицу. Массовое число ядра, как и во всех других видах бета-распада, не изменяется. Этот процесс характерен для . Если энергетическая разница между родительским и дочерним атомом (доступная энергия бета-распада) превышает 1,022 МэВ (удвоенную массу электрона), электронный захват всегда конкурирует с другим типом бета-распада, позитронным распадом . Например, рубидий-83 превращается в криптон-83 только посредством электронного захвата (доступная энергия около 0,9 МэВ), тогда как натрий-22 распадается в неон-22 посредством как электронного захвата, так и позитронного распада (доступная энергия около 2,8 МэВ). Известным и самым часто приводимым примером электронного захвата является превращение калия-40 в аргон с вероятностью этого канала распада около 10 %.

Поскольку число протонов в ядре (то есть заряд ядра) при электронном захвате уменьшается, этот процесс превращает ядро одного химического элемента в ядро другого элемента, расположенного ближе к началу таблицы Менделеева.

Общая схема электронного захвата:

p + + e n + ν e . {\displaystyle \mathrm {p} ^{+}+\mathrm {e} ^{-}\rightarrow \mathrm {n} +{\nu }_{e}\,.}

Некоторые примеры электронного захвата:

13 26 A l + e 12 26 M g + ν e , {\displaystyle \mathrm {{}_{13}^{26}Al} +\mathrm {e} ^{-}\rightarrow \mathrm {{}_{12}^{26}Mg} +{\nu }_{e}\,,}

28 59 N i + e 27 59 C o + ν e . {\displaystyle \mathrm {{}_{28}^{59}Ni} +\mathrm {e} ^{-}\rightarrow \mathrm {{}_{27}^{59}Co} +{\nu }_{e}\,.}

Процессы в электронной оболочке

Электрон захватывается ядром с, как правило, ближайших к нему электронных оболочек (в порядке K, L, M, N, …), причём при прочих равных условиях максимальна вероятность захвата s -электрона. Кроме того, плотность протонов в ядре увеличивается с ростом заряда ядра, поэтому электронный захват более вероятен для тяжёлых ядер. В случае захвата электрона с K-оболочки процесс называется К-захватом, с L-оболочки — L-захватом и т. д.

Атом при электронном захвате переходит в возбуждённое состояние с внутренней оболочкой без электрона (или, как говорят, с «дыркой», вакансией на внутренней оболочке). Снятие возбуждения атомной оболочки происходит путём перехода на нижний уровень электрона с одной из верхних оболочек, причем образовавшуюся на более высокой оболочке вакансию может заполнить электрон с ещё более высокой оболочки и т. д. Энергия, выделяющаяся при этом, уносится одним или несколькими фотонами рентгеновского излучения и/или одним или несколькими Оже-электронами . Если электронный захват происходит в атоме, находящемся в вакууме или разреженном газе, распавшийся атом образует, как правило, многозарядный положительный ион вследствие потери оже-электронов; вероятность сохранения атомом нейтральности порядка процента и менее.

Распределение энергии и импульса между продуктами распада

Электронные нейтрино, образующиеся в e -захвате, имеют моноэнергетический спектр, поскольку кинетическая энергия распада делится между двумя частицами: нейтрино и ядром отдачи. Импульсы этих частиц в системе центра инерции равны, однако так как дочернее ядро на много порядков массивнее, чем нейтрино, поэтому почти вся выделившаяся в распаде энергия уносится нейтрино. Характерная кинетическая энергия ядер отдачи составляет лишь несколько эВ (несколько десятков эВ для лёгких ядер), характерная скорость отдачи ядра — километры в секунду. Часть энергии, выделившейся в электронном захвате, передаётся электронной оболочке (эта энергия равна энергии связи захватываемого электрона) и выделяется в каскадных переходах в оболочке (см. выше).

В редких случаях электронный захват сопровождается возникновением гамма-кванта внутреннего тормозного излучения . При этом энергия и импульс распределяются между тремя частицами, и энергетический спектр нейтрино, тормозного фотона и ядра отдачи становится непрерывным. Этот процесс следует отличать от электронного захвата с заселением одного из возбуждённых уровней дочернего ядра, что во многих случаях даже более вероятно, чем заселение основного уровня (если переход на основной уровень подавлен правилами отбора по спину и чётности ).

Некоторые примеры распадов с e -захватом

Примеры ядер, испытывающих наряду с e -захват β + {\displaystyle \beta ^{\operatorname {+} }} -распад
13 26 A l + e 12 26 M g + ν e {\displaystyle \mathrm {{}_{13}^{26}Al} +\mathrm {e} ^{-}\rightarrow \mathrm {{}_{12}^{26}Mg} +{\nu }_{e}} ;
28 59 N i + e 27 59 C o + ν e {\displaystyle \mathrm {{}_{28}^{59}Ni} +\mathrm {e} ^{-}\rightarrow \mathrm {{}_{27}^{59}Co} +{\nu }_{e}} ;
7 13 N + e 6 13 C + ν e {\displaystyle \mathrm {{}_{\ 7}^{13}N} +\mathrm {e} ^{-}\rightarrow \mathrm {{}_{\ 6}^{13}C} +{\nu }_{e}} ;
9 18 F + e 8 18 O + ν e {\displaystyle \mathrm {{}_{\ 9}^{18}F} +\mathrm {e} ^{-}\rightarrow \mathrm {{}_{\ 8}^{18}O} +{\nu }_{e}} ;
49 110 I n + e 48 110 C d + ν e {\displaystyle \mathrm {{}_{\ 49}^{110}In} +\mathrm {e} ^{-}\rightarrow \mathrm {{}_{\ 48}^{110}Cd} +{\nu }_{e}} .
Пример ядра, для которого неизвестен β + {\displaystyle \beta ^{+}} -распад
82 205 P b + e 81 205 T l + ν e {\displaystyle \mathrm {{}_{\ 82}^{205}Pb} +\mathrm {e} ^{-}\rightarrow \mathrm {{}_{\ 81}^{205}Tl} +{\nu }_{e}} .
Пример ядра, распадающегося по трём различным каналам, β {\displaystyle \beta ^{-}\!} -, β + {\displaystyle \beta ^{+}\!} -распады и e -захват у ядра калия-40
19 40 K + e 18 40 A r + ν e {\displaystyle \mathrm {{}_{19}^{40}K} +\mathrm {e} ^{-}\rightarrow \mathrm {{}_{18}^{40}Ar} +{\nu }_{e}\quad } (вероятность 11 %)
19 40 K 20 40 C a + e + ν e ¯ {\displaystyle \mathrm {{}_{19}^{40}K} \rightarrow \mathrm {{}_{20}^{40}Ca} +\mathrm {e} ^{-}+{\overline {{\nu }_{e}}}\quad } (вероятность 89 %)
19 40 K 18 40 A r + e + + ν e {\displaystyle \mathrm {{}_{19}^{40}K} \rightarrow \mathrm {{}_{18}^{40}Ar} +\mathrm {e} ^{+}+{\nu }_{e}\quad } (вероятность 0,001 %)

Очень редко наблюдается двойной электронный захват (аналог двойного бета-распада ), впервые наблюдавшийся в 2019 г. :

54 124 X e + 2 e 52 124 T e + 2 ν e . {\displaystyle \mathrm {{}_{\ 54}^{124}Xe} +2\mathrm {e} ^{-}\rightarrow \mathrm {{}_{\ 52}^{124}Te} +2{\nu }_{e}.}

Влияние электронного окружения на вероятность e -захвата

Радиоактивные ядра, для которых разрешён чистый электронный захват, оказываются стабильными, если они полностью ионизированы (такие ионы называют «голыми»). Такие ядра, сформированные в ходе r-процессов во взрывающейся сверхновой и выброшенные в космос при достаточно высокой температуре окружающей плазмы, могут остаться полностью ионизированными и, таким образом, стабильными по отношению к электронному захвату, пока они не встретятся с электронами в космосе. Аномалии в распределении элементов, как предполагается, частично возникли благодаря этому свойству электронного захвата.

Химические связи также могут влиять на вероятность электронного захвата (правда, в малой степени, обычно меньше 1 %) путём изменения электронной плотности вблизи ядра . Экспериментально обнаружено также, что на вероятность электронного захвата некоторое (очень небольшое) влияние оказывают температура и давление окружающей среды — также посредством изменения электронной плотности в ядре. Ощутимое влияние окружающей среды на вероятность распада выделяет электронный захват из других видов радиоактивного распада.

См. также

Примечания

  1. Nadja Podbregar. (неопр.) (25 апреля 2019).
  2. Robert Gast. (неопр.) (24 апреля 2019).
  3. Philip Ball. Radioactivity gets fast-forward. A radioactive element's rate of decay has been speeded up.. — Nature, 2004. — doi : .

Ссылки

  • // Thomas Jefferson National Accelerator
  • ЭЛЕКТРОННЫЙ ЗАХВАТ // Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.
  • // Бекман

Same as Электронный захват