Interested Article - Антагонистическая игра

Антагонисти́ческая игра́ или игра́ с нулево́й су́ммой ( англ. zero-sum game ) — термин теории игр . Антагонистической игрой называется некооперативная игра , в которой сумма выигрышей и проигрышей всех игроков равна 0. Следовательно, это означает, что выигрыш одного обязательно представляет собой проигрыш для другого.

Формально антагонистическая игра может быть представлена тройкой < X , Y , F >, где X и Y — множества стратегий первого и второго игроков, соответственно; F — функция выигрыша первого игрока, ставящая в соответствие каждой паре стратегий (ситуации) ( x , y ), действительное число, соответствующее полезности первого игрока при реализации данной ситуации. Так как интересы игроков противоположны, функция F одновременно представляет и проигрыш второго игрока.

Исторически антагонистические игры являются первым классом математических моделей теории игр, при помощи которых описывались азартные игры. Считается, что благодаря этому предмету исследования теория игр и получила своё название. В настоящее время антагонистические игры рассматриваются как часть более широкого класса некооперативных игр .

Пример

X \ Y Орёл Решка
Орёл -1, 1 1, -1
Решка 1, -1 -1, 1

Простейшим примером антагонистической игры является игра « Орлянка ». Первый игрок прячет монету орлом или решкой вверх, а второй пытается угадать, как она спрятана. Если он не угадывает — он платит первому одну денежную единицу, если угадывает — первый платит ему одну денежную единицу.

В данной игре каждый участник имеет две стратегии: «орёл» и «решка». Множество ситуаций в игре состоит из четырёх элементов. В строках таблицы указаны стратегии первого игрока х , в столбцах — стратегии второго игрока y . Для каждой из ситуаций указаны выигрыши первого и второго игроков.

В аналитическом виде функция выигрыша первого игрока имеет следующую форму:

где x X и y Y — стратегии первого и второго игроков, соответственно.

Так как выигрыш первого игрока равен проигрышу второго, то .

Если результат полностью определяется игроком, совершившим последний ход (если правила хода идентичны для игроков), стратегия может быть найдена с помощью функции Гранди .

См. также

Литература

  • Петросян Л. А. , Зенкевич Н.А., Семина Е.А. Теория игр: Учеб. пособие для ун-тов. — М. : Высш. шк., Книжный дом «Университет», 1998. — С. 304. — ISBN 5-06-001005-8 , 5-8013-0007-4.
  • Васин А. А. , Морозов В. В. Теория игр и модели математической экономики. — М. : Макс-пресс, 2005. — 272 с. — ISBN 5-317-01388-7 .


Источник —

Same as Антагонистическая игра