Группа восьми (художественная группа)
- 1 year ago
- 0
- 0
Спорадическая группа — одна из 26 исключительных групп в теореме о классификации простых конечных групп .
Простая группа — это группа G , не содержащая каких-либо нормальных подгрупп , отличных от самой группы G и тривиальной (единичной) подгруппы. Теорема классификации утверждает, что состоит из 18 счётных бесконечных семейств, плюс 26 исключений, которые не попадают в эту классификацию. Эти исключения называются спорадическими группами. Они также известны под названиями «спорадические простые группы» или «спорадические конечные группы». Поскольку группа Титса не является строго группой лиева типа , иногда она также считается спорадической и в этом случае является 27-й спорадической группой.
Группа Монстр является наибольшей среди спорадических групп и содержит в качестве подгрупп или все, за исключением шести, другие спорадические группы.
Пять спорадических групп обнаружил Матьё в 1860-х годах, остальные 21 найдены между 1965 и 1975 годами. Существование нескольких из этих групп было предсказано до их построения. Позднее было доказано , что этим окончательно завершён полный поиск. Большинство групп носят имена математиков, первыми предсказавшими их существование.
Полный список групп:
Группа Титса T иногда также считается спорадической группой (она почти лиева типа) и по этой причине по некоторым источникам число спорадических групп даётся как 27, а не 26. По другим источникам группа Титса не считается ни спорадической, ни группой лиева типа.
Для всех спорадических групп были построены матричные представления над конечными полями.
Наиболее раннее употребление термина «спорадическая группа» найдено у Бёрнсайда , где он говорит о группах Матьё: «Эти, по всей видимости, спорадические простые группы требуют более тщательного исследования, чем до сих пор получали».
Диаграмма справа основывается на диаграмме Ронана . Спорадические группы также имеют большое число подгрупп, не являющихся спорадическими, но на диаграмме они не представлены ввиду их огромного числа.
Из 26 спорадических групп 20 находятся внутри группы «Монстр» в качестве подгрупп или .
Шесть исключений J 1 , J 3 , J 4 , O’N , Ru и Ly иногда называют .
Остальные двадцать групп называют Счастливым семейством (название дал ) и их можно разбить на три поколения.
Группы M n для n = 11, 12, 22, 23 и 24 являются кратно-транзитивными группами перестановок n точек. Все они являются подгруппами группы M 24 , которая является группой перестановок 24 точек.
Все группы автоморфизмов решётки в 24-мерном пространстве, называемой решёткой Лича :
Состоит из подгрупп, которые тесно связаны с Монстром M :
(Эта серия продолжается и дальше — произведение M 12 и группы порядка 11 является централизатором элемента порядка 11 в M .)
Группа Титса также принадлежит этому поколению — существует подгруппа , нормализующая 2C 2 подгруппу B , порождающая подгруппу , нормализующую некоторую подгруппу Q 8 Монстра. является также подгруппой групп Фишера Fi 22 , Fi 23 и Fi 24 ′ и «малого Монстра» B . является подгруппой группы-парии Рудвалиса Ru и не имеет других зависимостей со спорадическими простыми группами кроме перечисленных выше.
Группа | Поколение | Порядок (последовательность в OEIS ) |
Значащих
цифр |
Разложение |
Тройка
Стандартных генераторов (a, b, ab) |
Другие условия |
---|---|---|---|---|---|---|
F 1 или M | третье |
8080174247945128758864599049617107
57005754368000000000 |
≈ 8⋅10 53 | 2 46 • 3 20 • 5 9 • 7 6 • 11 2 • 13 3 • 17 • 19 • 23 • 29 • 31 • 41 • 47 • 59 • 71 | 2A, 3B, 29 | |
третье | 4154781481226426191177580544000000 | ≈ 4⋅10 33 | 2C, 3A, 55 | |||
третье | 1255205709190661721292800 | ≈ 1⋅10 24 | 2 21 • 3 16 • 5 2 • 7 3 • 11 • 13 • 17 • 23 • 29 | 2A, 3E, 29 | ||
третье | 4089470473293004800 | ≈ 4⋅10 18 | 2 18 • 3 13 • 5 2 • 7 • 11 • 13 • 17 • 23 | 2B, 3D, 28 | ||
третье | 64561751654400 | ≈ 6⋅10 13 | 2 17 • 3 9 • 5 2 • 7 • 11 • 13 | 2A, 13, 11 | ||
третье | 90745943887872000 | ≈ 9⋅10 16 | 2 15 • 3 10 • 5 3 • 7 2 • 13 • 19 • 31 | 2, 3A, 19 | ||
пария | 51765179004000000 | ≈ 5⋅10 16 | 2 8 • 3 7 • 5 6 • 7 • 11 • 31 • 37 • 67 | 2, 5A, 14 | ||
третье | 273030912000000 | ≈ 3⋅10 14 | 2 14 • 3 6 • 5 6 • 7 • 11 • 19 | 2A, 3B, 22 | ||
Co 1 | второе | 4157776806543360000 | ≈ 4⋅10 18 | 2 21 • 3 9 • 5 4 • 7 2 • 11 • 13 • 23 | 2B, 3C, 40 | |
второе | 42305421312000 | ≈ 4⋅10 13 | 2 18 • 3 6 • 5 3 • 7 • 11 • 23 | 2A, 5A, 28 | ||
второе | 495766656000 | ≈ 5⋅10 11 | 2 10 • 3 7 • 5 3 • 7 • 11 • 23 | 2A, 7C, 17 | ||
пария | 460815505920 | ≈ 5⋅10 11 | 2 9 • 3 4 • 5 • 7 3 • 11 • 19 • 31 | 2A, 4A, 11 | ||
второе | 448345497600 | ≈ 4⋅10 11 | 2 13 • 3 7 • 5 2 • 7 • 11 • 13 | 2B, 3B, 13 | ||
Ru | пария | 145926144000 | ≈ 1⋅10 11 | 2 14 • 3 3 • 5 3 • 7 • 13 • 29 | 2B, 4A, 13 | |
третье | 4030387200 | ≈ 4⋅10 9 | 2 10 • 3 3 • 5 2 • 7 3 • 17 | 2A, 7C, 17 | ||
второе | 898128000 | ≈ 9⋅10 8 | 2 7 • 3 6 • 5 3 • 7 • 11 | 2A, 5A, 11 | ||
второе | 44352000 | ≈ 4⋅10 7 | 2 9 • 3 2 • 5 3 • 7 • 11 | 2A, 5A, 11 | ||
пария | 86775571046077562880 | ≈ 9⋅10 19 | 2 21 • 3 3 • 5 • 7 • 11 3 • 23 • 29 • 31 • 37 • 43 | 2A, 4A, 37 | ||
пария | 50232960 | ≈ 5⋅10 7 | 2 7 • 3 5 • 5 • 17 • 19 | 2A, 3A, 19 | ||
J 2 или HJ | второе | 604800 | ≈ 6⋅10 5 | 2 7 • 3 3 • 5 2 • 7 | 2B, 3B, 7 | |
пария | 175560 | ≈ 2⋅10 5 | 2 3 • 3 • 5 • 7 • 11 • 19 | 2, 3, 7 | ||
первое | 244823040 | ≈ 2⋅10 8 | 2 10 • 3 3 • 5 • 7 • 11 • 23 | 2B, 3A, 23 | ||
первое | 10200960 | ≈ 1⋅10 7 | 2 7 • 3 2 • 5 • 7 • 11 • 23 | 2, 4, 23 | ||
первое | 443520 | ≈ 4⋅10 5 | 2 7 • 3 2 • 5 • 7 • 11 | 2A, 4A, 11 | ||
первое | 95040 | ≈ 1⋅10 5 | 2 6 • 3 3 • 5 • 11 | 2B, 3B, 11 | ||
первое | 7920 | ≈ 8⋅10 3 | 2 4 • 3 2 • 5 • 11 | 2, 4, 11 |