Нормальная форма игры
- 1 year ago
- 0
- 0
Нормальная высота — один из возможных способов определения высоты от уровня моря. Величина, численно равная отношению геопотенциальной величины в данной точке к среднему значению нормальной силы тяжести Земли по отрезку, отложенному от поверхности земного эллипсоида .
Иначе, значение, которое можно охарактеризовать как: перемещение единичной массы в поле силы тяжести из некоторой точки с потенциалом в точку с потенциалом , деленное на среднее интегральное значение нормальной силы тяжести на отрезке до . В отличие от ортометрической высоты при вычислении нормальной высоты нет необходимости иметь информацию о внутреннем строении Земли, так как вычисление нормальной высоты происходит не в реальном, а в нормальном поле .
Впервые нормальные высоты введены М. С. Молоденским , тогда они ещё не имели названия и были обозначены через . В работе того же Молоденского, нормальные высоты были названы вспомогательными . Свое современное название эти высоты, по предложению Молоденского, получили в работе
М. С. Молоденский отметил, что определение малой разности между реальным и нормальным гравитационным полем Земли (аномальное поле) имеет строгое решение, если в возникающих уравнениях ввести «вспомогательные» высоты под условием:
В. Ф. Еремеев отметил, что «вспомогательные» высоты ближе к суммам нивелирных превышений , чем ортометрические высоты , и по предложению самого Молоденского был введён термин «нормальная высота» .
При измерении нивелирных превышений и вычислении геопотенциальных чисел в разных странах используют различные исходные пункты. Каждая изолированная нивелирная сеть, развитая от какого-либо футштока , определяет разности потенциалов точек этой сети относительно уровненной поверхности , проходящей через исходный пункт данной сети. Поскольку уровень моря в разных районах различен, исходные пункты связаны с разными уровенными поверхностями , и по измерениям в изолированных сетях нельзя получить геопотенциальные числа для всей Земли в единой системе. Чтобы подчеркнуть это, говорят, что на данной территории развита система высот от определённого футштока. Так, в СССР была создана Балтийская система высот , в которой исходным пунктом служит Кронштадский футшток . Здесь термин «система» имеет смысл, как система, которая устанавливает некоторую уровенную поверхность, относительно который вычисляют разности потенциалов .
Система нормальных высот принята в России , странах СНГ и некоторых европейских странах, Швеция, Германия , Франция и др.).
В Австрии , Боснии и Герцеговине , Норвегии , Югославии приняты .
В случаях, когда высоты определены с не очень высокой точностью, все высоты, кроме геодезической , называют высотами над уровнем моря , или абсолютными высотами , а разность высот — относительными высотами . Это аналогично названию координат приближенно все координаты (астрономические, геодезические, геоцентрические) называют географическими .
связана с силовыми линиями и уровенными поверхностями реального поля Земли. Система координат в нормальном поле связана с нормальной силовой линией и нормальной уровенной поверхностью, проходящими через данных пункт. Так как нормальное поле не совпадает с действительными, координаты в нормально поле отличаются от натуральных .
Установим связь нормального геопотенциального числа с действительным . Для потенциала в точке
;
образуем разность . Учитывая что эта разность равна аномальному потенциалу получим
Действительное и нормальное геопотенциальное число различается на величину аномального потенциала в точке и разность потенциалов на геоиде и уровенном эллипсоиде .
Если бы гравитационное поле Земли совпадало с нормальным и потенциал на геоиде был равен потенциалу на уровенном эллипсоиде , нормальное и действительное геопотенциальное число точки тоже совпали бы. Однако на силовой линии нормального поля, проходящей через точку , всегда найдется такая точка в которой нормальное геопотенциальное число тождественно равно действительному
Причем поскольку нормальный потенциал всегда выбирают близким к действительному, точка будет не далеко расположена от точки .
Высота в нормальном поле определена как отрезок нормальной силовой линии от эллипсоида до любой точки . Она отличается от геодезической высоты только из-за кривизны нормальной силовой линии, но это отличие практически не ощутимо. Высота в нормальном поле — это расстояние, измеряемое вдоль силовой линии нормального поля от эллипсоида до любой точки , а нормальная высота — расстояние вдоль нормальной силовой линии от той же точки эллипсоида, но не до точки , а до точки , в который выполняется тождество выше .
Отрезок появляется из-за несовпадения действительного и нормального поля является элементом аномального поля. Его называют аномалией высоты.
Аномалию высоты получают как расстояние между уровенными поверхностями проходящими через точки и . Согласно формуле , полагая и , находим
где — среднее значение нормальной силы тяжести на отрезке
Высота равна сумме нормальной высоты и аномалии высоты
Так как высота в нормальном поле практически совпадает с геодезической, это выражение справедливо и для связи геодезической и нормальной высот
Перенесём измеренную разность потенциалов в нормальное поле :
где точка с нормальным потенциалом не совпадает с точкой H на земной поверхности, а лежит с ней практически на одной нормали к эллипсоиду (см. рис. 1), — среднее интегральное значение нормальной силы тяжести на отрезке от до :
что можно вычислить с любой степенью точности, в отличие от грубо известного , где — среднее интегральное значение силы тяжести на отрезке силовой линии . Из условия выше имеем:
— нормальная высота точки земной поверхности. |
В простейшем случае можно определить по нормальному градиенту как на половине , то есть :