Акт гражданского состояния
- 1 year ago
- 0
- 0
Уравне́ние состоя́ния идеа́льного га́за (иногда уравнение Менделеева — Клапейрона ) — формула, устанавливающая зависимость между давлением , молярным объёмом и абсолютной температурой идеального газа . Уравнение имеет вид:
где
Уравнение состояния идеального газа можно записать в виде:
где — масса, — молярная масса , (так как количество вещества ):
или в виде
где — концентрация частиц (атомов или молекул) - количество частиц, — постоянная Больцмана .
Эта форма записи носит имя уравнения (закона) Клапейрона — Менделеева.
Уравнение, выведенное Клапейроном , содержало некую неуниверсальную газовую постоянную значение которой необходимо было измерять для каждого газа:
Менделеев обнаружил, что прямо пропорциональна , коэффициент пропорциональности он назвал универсальной газовой постоянной . [ источник не указан 1694 дня ]
В случае постоянной массы газа уравнение можно записать в виде:
Последнее уравнение называют объединённым газовым законом . Из него получаются законы Бойля — Мариотта, Шарля и Гей-Люссака:
В форме пропорции этот закон удобен для расчёта перевода газа из одного состояния в другое.
С точки зрения химика этот закон может звучать несколько иначе: объёмы вступающих в реакцию газов при одинаковых условиях (температуре, давлении) относятся друг к другу и к объёмам образующихся газообразных соединений как целые числа. Например, 1 объём водорода соединяется с 1 объёмом хлора , при этом образуются 2 объёма хлороводорода :
1 объём азота соединяется с 3 объёмами водорода с образованием 2 объёмов аммиака :
Закон Бойля — Мариотта
назван в честь ирландского физика, химика и философа Роберта Бойля (1627—1691), открывшего его в 1662 г., а также в честь французского физика Эдма Мариотта (1620—1684), который открыл этот закон независимо от Бойля в 1677 году.
В некоторых случаях (в газовой динамике ) уравнение состояния идеального газа удобно записывать в форме
где — показатель адиабаты , — внутренняя энергия единицы массы вещества.
Эмиль Амага обнаружил, что при высоких давлениях поведение газов отклоняется от закона Бойля — Мариотта. Это обстоятельство может быть прояснено на основании молекулярных представлений.
С одной стороны, в сильно сжатых газах размеры самих молекул являются сравнимыми с расстояниями между молекулами. Таким образом, свободное пространство, в котором движутся молекулы, меньше, чем полный объём газа. Это обстоятельство увеличивает число ударов молекул в стенку, так как благодаря ему сокращается расстояние, которое должна пролететь молекула, чтобы достигнуть стенки.
С другой стороны, в сильно сжатом и, следовательно, более плотном газе молекулы заметно притягиваются к другим молекулам гораздо большую часть времени, чем молекулы в разреженном газе. Это, наоборот, уменьшает число ударов молекул в стенку, так как при наличии притяжения к другим молекулам молекулы газа движутся по направлению к стенке с меньшей скоростью, чем при отсутствии притяжения. При не слишком больших давлениях более существенным является второе обстоятельство и произведение немного уменьшается. При очень высоких давлениях большую роль играет первое обстоятельство и произведение увеличивается.