Левиафан (телескоп)
- 1 year ago
- 0
- 0
Космический телескоп «Джеймс Уэ́бб» ( англ. James Webb Space Telescope, JWST ) — орбитальная инфракрасная обсерватория . Самый крупный космический телескоп с самым большим зеркалом ( сегментированное зеркало общим диаметром 6,5 метра , однако крупнейшее монолитное зеркало остаётся у телескопа Гершель — 3,5 метра ) из когда-либо запущенных человечеством .
Первоначально назывался «Космический телескоп нового поколения» ( англ. Next-generation space telescope, NGST ). В 2002 году переименован в честь второго руководителя НАСА Джеймса Уэбба (1906—1992), возглавлявшего агентство в 1961—1968 годах, во время реализации программы « Аполлон ».
Было решено сделать телескопа не цельным, а из складываемых сегментов, которые будут раскрыты на орбите, так как диаметр первичного зеркала не позволил бы его разместить в ракете-носителе « Ариан-5 ». Первичное зеркало телескопа «Джеймс Уэбб» является сегментированным и состоит из 18 шестиугольных сегментов, изготовленных из позолоченного бериллия , размер каждого из сегментов составляет 1,32 метра от ребра до ребра, которые вместе объединяются в одно зеркало общим диаметром 6,5 метра . Это даёт телескопу площадь сбора света примерно в 5,6 раза больше, чем у зеркала телескопа Хаббл диаметром в 2,4 метра , с площадью собирающей поверхности 25,37 м² . В отличие от Хаббла, который ведёт наблюдения в ближнем ультрафиолетовом , видимом и ближнем инфракрасном ( 0,1—1,0 мкм ) спектрах, телескоп «Джеймс Уэбб» ведёт наблюдения в более низком диапазоне частот, от длинноволнового видимого света (красный) до среднего инфракрасного ( 0,6—28,3 мкм ). Это позволяет ему наблюдать наиболее далёкие объекты во Вселенной, объекты с большим красным смещением (первые галактики и звёзды во Вселенной), которые слишком старые, слабые и далёкие для телескопа Хаббл . Хотя диаметр зеркала телескопа «Джеймс Уэбб» в 2,7 раза больше диаметра зеркала телескопа Хаббл , он получает сопоставимые по резкости изображения, потому что ведёт наблюдения в более длинноволновом инфракрасном диапазоне изучения , и соответственно является «преемником» не телескопа Хаббл , а телескопа Спитцер . Телескоп защищён 5-слойным тепловым экраном, позволяющим поддерживать температуру зеркала и приборов ниже 50 K ( −223 °C ), чтобы телескоп мог работать в инфракрасном диапазоне излучения и наблюдать слабые сигналы в инфракрасном диапазоне без помех от любых других источников тепла. Поэтому телескоп размещён на гало-орбите в точке Лагранжа L 2 системы Солнце — Земля, в 1,5 млн км от Земли, где его 5-слойный тепловой экран, в форме воздушного змея и размером с теннисный корт, защищает его от нагревания Солнцем, Землёй и Луной одновременно . Размещение телескопа в космосе даёт возможность регистрировать электромагнитное излучение в диапазонах, в которых земная атмосфера непрозрачна; в первую очередь — в инфракрасном диапазоне. Благодаря отсутствию влияния атмосферы разрешающая способность телескопа в 7—10 раз больше, чем у аналогичного телескопа, расположенного на Земле.
Проект — результат международного сотрудничества 17 стран , во главе которых стоит НАСА , со значительным вкладом Европейского и Канадского космических агентств.
Ориентировочная стоимость проекта составляет 10 миллиардов долларов (она будет расти по мере эксплуатации телескопа) из которых вклад НАСА оценивается в 8,8 миллиарда долларов, вклад Европейского космического агентства — 850 миллионов долларов, включая запуск, вклад Канадского космического агентства — 165 миллионов долларов .
25 декабря 2021 года телескоп был успешно запущен с космодрома Куру при помощи ракеты « Ариан-5 » . Первые научные исследования начались летом 2022 года. Время службы телескопа в основном ограничено запасом топлива для маневрирования около точки L 2 . Первоначальный расчёт был 5—10 лет . Однако при запуске удалось совершить крайне удачный манёвр и текущий запас топлива ограничен 20 годами, но не все приборы могут проработать столько времени .
9 января 2022 года телескоп успешно развернул все свои системы и перешёл в полностью операционное состояние, а 24 января 2022 года он успешно вышел на гало-орбиту в точке Лагранжа L 2 системы Солнце — Земля, в 1,5 млн км от Земли . Охлаждение до рабочей температуры заняло несколько недель, а затем начались окончательные процедуры калибровки в течение примерно 5 месяцев, возможно, включая получения первого света Вселенной после « тёмных веков », перед началом запланированной исследовательской программы .
Уже в первые несколько месяцев работы были получены неожиданные данные для различных небесных тел от отдалённых галактик до планет Солнечной системы и их спутников , в 2022 году научный журнал Science назвал Джеймс-Уэбб « Прорывом года » за грядущую революцию в представлениях человека о космосе.
15 июня 2017 года НАСА и ЕКА опубликовали список первых целей в работе телескопа, включающие свыше 2100 наблюдений. Ими стали планеты и малые тела Солнечной системы, экзопланеты и протопланетные диски, галактики и скопления галактик, а также квазары .
30 марта 2021 года НАСА объявило финальный список первичных целей для наблюдений, которые стартуют через 6 месяцев после запуска телескопа. В общей сложности было отобрано 286 из более чем одной тысячи заявок по семи основным направлениям астрономии, которые в сумме займут около шести тысяч часов наблюдательного времени телескопа, что составляет около двух третей всего времени, выделенного в рамках первого цикла наблюдений . NASA получит 80 % времени телескопа, тогда как EKA — 15 % , CSA — 5 % .
Первичными задачами JWST являются: обнаружение света первых звёзд и галактик , сформированных после Большого взрыва , изучение формирования и развития галактик, звёзд, планетных систем и происхождения жизни. Также «Джеймс Уэбб» сможет рассказать о том, когда и где началась реионизация Вселенной и что её вызвало . «Джеймсу Уэббу» предстоит выяснить, как выглядели галактики во временном периоде начиная с 400 тыс. лет после Большого взрыва до 400 млн лет после Большого взрыва, недоступном для обычных телескопов не по причине недостаточной разрешающей способности, а в силу Красного смещения , за счёт, в том числе, эффекта Доплера , уводящего оптическое излучение этих объектов в инфракрасный диапазон.
Телескоп способен обнаруживать относительно холодные экзопланеты с температурой поверхности до 300 К (что практически равно температуре поверхности Земли), находящиеся дальше 12 а. е. от своих звёзд и удалённые от Земли на расстояние до 15 световых лет. Также «Вебб» способен наблюдать планеты с массами около 0,3 массы Юпитера на расстояниях выше 100 а. е. от родительской звезды и с массами ниже массы Сатурна на расстояниях выше 10 а. е. от родительской звезды . В зону подробного наблюдения попадут более двух десятков ближайших к Солнцу звёзд. Благодаря JWST ожидается настоящий прорыв в экзопланетологии — возможностей телескопа будет достаточно для того, чтобы обнаруживать не только сами экзопланеты, но даже спутники и спектральные линии этих планет. Это будет являться недостижимым показателем ни для одного наземного и космического телескопа до 2028 года, когда в строй будет введён Чрезвычайно большой телескоп с диаметром зеркала в 39,3 м . Для поиска экзопланет будут также использованы данные, которые получил телескоп «Кеплер» начиная с 2009 года. Однако возможностей телескопа будет недостаточно для получения каких-либо изображений найденных экзопланет. Даже ближайщие к нам гигантские экзопланеты (супер-Юпитеры) будут и в Чрезвычайно большой телескоп, и в возможный большой LUVOIR фиксироваться слабыми точками.
В перечень первостепенных объектов для изучения входят 17 ближайших протопланетных дисков из двадцати, изображения которых были получены в 2003 году с помощью космического телескопа « Спитцер » и в 2018 году комплексом радиотелескопов ALMA . «Уэбб» будет измерять спектры протопланетных дисков, что позволит составить представление об их химическом составе, а также дополнить деталями внутреннего строения системы, наблюдаемые ранее комплексом ALMA в рамках проекта DSHARP (от англ. Disk Substructures at High Angular Resolution Project ). Учёные ожидают, что средний инфракрасный диапазон, в котором будет работать телескоп (прибор MIRI), даст возможность выявить во внутренних частях протопланетных дисков активно формирующиеся каменистые планеты, похожие на Землю, по характерным химическим элементам, из которых они состоят. Будет измерено количество воды, окиси углерода, двуокиси углерода, метана и аммиака в каждом диске, а с помощью спектроскопии будет возможно оценить содержание и расположение внутри диска кислорода, углерода и азота (это важно для понимания, находится ли вода в потенциально обитаемой зоне, где прочие условия подходят для возникновения жизни) .
Инфракрасные инструменты телескопа будут использованы для изучения водных миров Солнечной системы — спутника Юпитера Европы и спутника Сатурна Энцелада . Инструмент будет использован для поиска биосигнатур (метан, метанол, этан) в гейзерах обоих спутников .
Инструмент NIRCam сможет получить изображения Европы в высоком разрешении, которые будут использованы для изучения её поверхности и поиска регионов с гейзерами и высокой геологической активностью. Состав зафиксированных гейзеров будет проанализирован с помощью инструментов NIRSpec и MIRI. Данные, полученные в ходе этих исследований, будут также использованы при исследовании Европы зондом Europa Clipper .
Для Энцелада, ввиду его удалённости и малых размеров, получить изображения в высоком разрешении не удастся, однако возможности телескопа позволят провести анализ молекулярного состава его гейзеров.
Запланированы наблюдения Цереры , астероидов Паллада , Рюгу , транснептуновых объектов , кентавров и нескольких комет.
Год |
Планируемая
дата запуска |
Планируемый
бюджет (млрд $ ) |
---|---|---|
1997 | 2007 | 0,5 |
1998 | 2007 | 1 |
1999 | 2007-2008 | 1 |
2000 | 2009 | 1,8 |
2002 | 2010 | 2,5 |
2003 | 2011 | 2,5 |
2005 | 2013 | 3 |
2006 | 2014 | 4,5 |
2008 | 2014 | 5,1 |
2010 | не раньше сентября 2015 | ≥6,5 |
2011 | 2018 | 8,7 |
2013 | 2018 | 8,8 |
2017 | весна 2019 | 8,8 |
2018 | не раньше марта 2020 | ≥8,8 |
2018 | 30 марта 2021 | 9,66 |
2020 | 31 октября 2021 | ≥10 |
2021 | 18 декабря 2021 | ≥10 |
2021 | 22 декабря 2021 | ≥10 |
2021 | 24 декабря 2021 | ≥10 |
2021 | 25 декабря 2021 | ≥10 |
Идея строительства нового мощного космического телескопа возникла в 1996 году, когда американские астрономы выпустили доклад HST and Beyond .
До 2002 года телескоп назывался Next Generation Space Telescope («Космический телескоп нового поколения», NGST), поскольку новый инструмент должен продолжить исследования, начатые «Хабблом». Под этим же названием телескоп входил в состав комплексного проекта Пентагона AMSD по разработке сегментированного зеркала для разведывательных и лазерных ударных спутников . Наличие военных в чисто научном проекте плохо влияло на репутацию проекта и NASA хотело разорвать прямую связь с военной программой AMSD на уровне названия. Поэтому в 2002 году, когда действительно проект телескопа стал заметно отличаться в конструкции зеркала от других собратьев по программе AMSD , NASA решило переименовать телескоп в честь второго руководителя НАСА Джеймса Уэбба (1906—1992), возглавлявшего агентство в 1961—1968 годах, во время реализации программы « Аполлон ». Однако это также вызвало крупный скандал в научном сообществе США, более 1200 учёных и инженеров связанных с космическими исследованиями, включая известных учёных как , написали петицию с требованием переименовать телескоп ещё раз, так как Уэбб известен своим преследованием ЛГБТ сообщества среди персонала НАСА. По мнению авторов петиции Уэбб не заслуживает «памятника гомофобии ». После бурной дискуссии, руководство НАСА решило оставить название с учётом его вклада в программу «Аполлон». Однако среди американских учёных многие в знак протеста используют в своих научных работах только сокращённое название JWST и договорились расшифровывать его иначе: Just Wonderful Space Telescope («просто замечательный космический телескоп») .
Стоимость и сроки проекта неоднократно увеличивалась. В июне 2011 года стало известно, что стоимость телескопа превысила изначальные расчёты по меньшей мере в четыре раза.
В бюджете НАСА, предложенном в июле 2011 года конгрессом, предполагалось прекращение финансирования строительства телескопа из-за плохого управления и превышения бюджета программы , но в сентябре того же года бюджет был пересмотрен, и проект сохранил финансирование . Окончательное решение о продолжении финансирования было принято сенатом 1 ноября 2011 года.
В 2013 году на постройку телескопа было выделено 626,7 млн долларов .
К весне 2018 года стоимость проекта возросла до 9,66 млрд долларов .
Причины размещения телескопа в точке Лагранжа L 2 связаны в первую очередь с экранированием Землёй Солнца. Угловой размер Солнца в точке L 2 составляет 0°31', а угловой размер Земли 0°29' . Поскольку большая часть излучения Солнца закрыто Землёй, то температура внешнего теплового щита в точке L 2 составляет около +30°С, что меньше чем +200°С при полном облучении Солнцем в начале космического полёта обсерватории .
Вторая причина нахождения в точке L2 заключается в том, что Земля и Луна всегда находятся позади теплового щита телескопа и не окажутся в секторе неба, где телескоп выполняет исследования .
Дополнительной выгодой расположения в точке L2 является крайне низкий расход топлива в момент когда требуется возврат аппарата незначительно отклонившегося от точки L2. Текущий запас топлива James Webb составляет около 20 лет . Однако возможность пополнить запасы топлива в точке L2 отсутствует. Для сравнения космический телескоп «Хаббл» требует коррекции орбиты с периодичностью один раз в 5-10 лет, в противном случае телескоп сгорит в атмосфере Земли. После окончания топлива «Джеймс Уэбб» перейдёт на собственную орбиту вокруг Солнца .
Теплозащитный экран космического телескопа «Джеймс Уэбб» состоит из 5 слоёв каптона , на каждый из которых нанесено покрытие из алюминия, и имеет размер 21,1 на 14,6 метров . Экран нужен для защиты основного зеркала и научных приборов обсерватории от потоков тепла и космического излучения. Первые два «горячих» слоя обладают покрытием из легированного кремния. Моделирование показывает, что максимальная температура первого слоя будет составлять 383 кельвин , а минимальная температура последнего слоя составит 36 кельвин. Механизм развёртывания экрана имеет 90 натяжных тросов, а также установка 107 спусковых устройств, которые будут удерживать слои каптона в правильном положении до момента развёртывания .
Чувствительность телескопа и его разрешающая способность напрямую связаны с размером площади зеркала, которое собирает свет от объектов. Учёные и инженеры определили, что минимальный диаметр главного зеркала должен быть 6,5 метра , чтобы измерить свет от самых далёких галактик . Простое изготовление зеркала, подобного зеркалу телескопа « Хаббл », но большего размера, было неприемлемо, так как его масса была бы слишком большой, чтобы можно было запустить телескоп в космос. Команде учёных и инженеров необходимо было найти решение, чтобы новое зеркало имело 1/10 массы зеркала телескопа «Хаббл» на единицу площади .
Для создания зеркала была инициирована программа Advanced Mirror System Demonstrator (AMSD). Проект AMSD являлся проектом двойного назначения. В ходе данного проекта должна была быть создана технология сегментированного зеркала , которое предназначалось для James Webb, перспективных спутников инфракрасной разведки и зеркала для фокусировки лазера для перспективного ударного спутника Space Based Laser (SBL)
Зеркало по программе AMSD включало в себя следующие технические компоненты :
Сегментированные зеркала легче и дешевле цельных, но имеют такой недостаток, как зазоры в несколько миллиметров между сегментами. Это сказывается на том, что дифракционный лимит сегментированного зеркала определяется не только его диаметром, но и зависит от качества устранения микросдвигов между краями сегментов в разных направлениях, что порождает в свою очередь фазовый сдвиг и дифракционные эффекты. Адаптивная оптика сегментированных зеркал прежде всего предназначена для минимизации дифракции от зазоров между сегментами чётким выравниванием их в одной плоскости и подавления дифракции от вариабельности фокусировки разных сегментов . Модель дифракционных искажений James Webb после регулировки адаптивной оптикой показывает, что конечно зазоры между сегментами ухудшают качество изображения, но на 90 % дифракция зависит от размеров зеркала как и в классических цельных зеркалах .
Дифракция телескопа также зависит от длины волны. В ближнем инфракрасном диапазоне разрешение James Webb составит 0,03 угловой секунды , в длинноволновом инфракрасном диапазоне James Webb будет иметь разрешение даже меньше Hubble — 0,1 угловой секунды . Снимки Hubble в видимом свете доступны с разрешением 0,06 угловой секунды на уровне его теоретического предела .
Сегментированные зеркала с адаптивной оптикой при той же массе и стоимости в сравнении с классическим зеркалом дают существенно выше разрешение в том же диапазоне длин волн, а также несравнимо более высокую светосилу . После внедрения такой технологии в разведывательные спутники США, классическая оптика перестала быть нужной ЦРУ, и оно подарило NASA два зеркала-копии Hubble от спутников KH-11 , так как больше в них не нуждается из-за устаревания технологии . Прототип разведывательного инфракрасного спутника Пентагона в рамках программы AMSD на базе тех же зеркальных сегментов, что и для James Webb, был изготовлен теми же подрядчиками ( Northrop Grumman и другие) и передан в для практического обучения офицеров использованию инфракрасных разведчиков такого класса. Проект был реализован под руководством заместителя руководителя Национального управления военно-космической разведки США генерала армии . James Webb не является первым случаем использования одной технологии зеркала с разведывательными спутниками США. Телескоп Hubble использовался для отработки новой версии более крупного зеркала для разведывательных спутников KH-11 (Замочная Скважина) . Журнал , анализируя проект Эллен Павликовски, отметил, что в космических телескопах общественность реагирует только на то, что ей позволяет знать Пентагон, в то время как современное развитие технологий космического наблюдения намного опережает то, что NASA разрешается сообщать в пресс-релизах. The Space Review отмечает опыт спутника Орион (Ментор) , где на геостационарной орбите развёрнута конструкция радиотелескопа более чем 100 метров в диаметре, которая на порядки сложнее механики разложения James Webb. Также эксперты отмечают, что ВМФ США в своём пресс-релизе о разведывательном прототипе сообщает очень много деталей о практическом использовании адаптивной оптики с искривлением зеркал под воздействием микромеханики, что может означать, что это опыт, полученный не со стенда, а с функционирующего на орбите спутника. По мнению экспертов это может говорить о том, что военные клоны James Webb уже успешно развёрнуты на орбите с целями аналогичными разведывательной системе SBIRS , как то было с первыми KH-11 запущенными задолго до запуска Hubble .
Введённые правительством США режимы военной секретности для James Webb широко обсуждались в научном сообществе и крупных СМИ. Scientific American в 2014 году опубликовал статью о том, что научное сообщество откровенно удивлено тем, что чистым академическим учёным запрещено участвовать в руководстве проекта James Webb, что вызвало вопросы о балансе научных и военных целей проекта. Руководитель проекта, руководитель научной миссии и директор по астрофизике должны иметь высочайший для США уровень допуска к секретным военным материалам Top Secret . Это фактически требовало, чтобы научным руководством проекта занимались не астрофизики и учёные, а инженеры с опытом разработки спутников-шпионов . Бывший аналитик ЦРУ Аллен Томсон отметил, что хотя NASA использует очень часто двойные технологии в научных проектах, но такое требование крайне необычно для NASA и указывает на то, что проект создаётся под эгидой Национального управления военно-космической разведки США . В 2016 году NASA опубликовало видео James Webb, где была снята крышка с задней части вторичного зеркала, что позволяло увидеть микромеханику его регулировки, которое позволяет его поворачивать с точностью 140 нанометров в конечную позицию, то есть примерно на размер вируса ВИЧ . Изображение блока адаптивной оптики было размыто, на что обратили внимание журналисты из Business Insider и запросили у NASA разъяснения. На что NASA официально сообщило, что изображение размыто из-за того, что данное устройство James Webb попадает под регуляцию закона США об обращении технологий вооружения ( ), то есть микромеханика зеркал James Webb классифицируется как оружие в рамках законодательства США . В 2017 году правительство США признало, что проект James Webb регулировался в рамках международного сотрудничества по законодательству, регулирующему экспорт технологий вооружения, что крайне усложняло работу не американских участников проекта. Поэтому в 2017 году James Webb был выведен из под действия ITAR .
Программа AMSD является сотрудничеством между НАСА, Национальным управлением военно-космической разведки США и Военно-воздушными силами США . На основе исследований AMSD были построены и испытаны два экспериментальных зеркала. Одно из них было сделано из бериллия компанией Ball Aerospace & Technologies , другое — построено фирмой Kodak (ныне — ITT ) из специального стекла .
Группа экспертов провела испытания обоих зеркал, целью которых было определить, насколько хорошо они выполняют свою задачу, сколько стоят и насколько легко (или трудно) было бы построить полноразмерное, 6,5-метровое зеркало. Эксперты рекомендовали зеркало из бериллия для телескопа Джеймса Уэбба по нескольким причинам, одна из которых — бериллий сохраняет свою форму при криогенных температурах. Кроме этого, решение Ball Aerospace & Technologies было дешевле, так как использовало меньше актуаторов , чем у конкурентов, что правда уменьшало возможности коррекции ошибок формы зеркала. Компания Northrop Grumman выбрала решение Ball по критериям «цена/качество», и Центр космических полётов Годдарда утвердил это решение.
Хотя решение Ball Aerospace & Technologies имеет только 4 актуатора, но обладает функциями адаптивной оптики. 3 актуатора по краям на самом деле являются 6 актуаторами, которые сдвоены и образуют «6D-актуатор», то есть головка каждого актуатора может занять независимое положение в плоскости, перпендикулярной зеркалу. Это позволяет краевым би-актуаторам не только наклонять зеркало, но выдвигать его вперёд/назад, вращать вокруг своей оси, а также сдвигать центр зеркала от центральной точки сегмента в любую сторону. Би-актуаторы могут деформировать зеркало только одновременно с его перемещением. Центральный «3D-актуатор» целиком выделен под адаптивную оптику и управляет кривизной сегмента. Совместная работа всех актуаторов передаётся на 16 независимых точек позиции и перегиба зеркала. Шаг механического актуатора Ball составляет 7 нанометров, рабочий ход — 21 миллиметр. При «распарковке» зеркала актуатор сначала использует грубый механизм перемещения, а затем уже подключается высокоточный.
Как отмечалось выше, детали механики вторичного зеркала James Webb засекречены, но из публикации конструктора актуаторов Роберта Вардена и пресс-релиза НАСА нам известно, что вторичное зеркало в целом имеет сходное устройство с остальными сегментами и управляется 6 актуаторами, то есть не имеет корректора кривизны, а только положения .
Ball Aerospace & Technologies также из своих военных разработок переделало для James Webb такое устройство, как зеркало тонкой рулевой настройки (Fine steering mirror) . Это устройство адаптивной оптики представляет собой зеркальце, которое может поворачиваться с точностью около 1 наноградуса на нужный угол . Устройство позволяет таким образом изменять угол зрения телескопа путём небольшого срезания размера изображения по краям. За счёт этого доступны несколько функций. В первую очередь может стабилизироваться направление на объект наблюдения. После разворота на новый объект телескопа могут быть остаточные вращения и они убирается этим прибором. Также не все приборы James Webb как спектрометры или субматрицы умеют работать на все его поле зрения и зеркало тонкой настройки позволяет не меняя положения телескопа наводить их на новый близкий объект.
Размер каждого из 18 шестиугольных сегментов зеркала составляет 1,32 метра от ребра до ребра, масса непосредственно самого́ зеркала в каждом сегменте — 20 кг , а масса всего сегмента в сборе (вместе с приводами точного позиционирования и т. д. ) — 40 кг .
Существенно меньше известно об приборах наблюдения, которые стыковались к зеркалам в программе AMSD. Однако приборы, установленные на James Webb, вероятно, имеют также корни в адаптации военных технологий для научных целей. Ключевой компонент инфракрасных приборов James Webb как матрицы и фотосенсоры изготовлены и Raytheon , которые являются основными поставщиками военной инфракрасной оптики Пентагона с незначительным объёмом гражданских заказов . NASA также сообщило, что James Webb использует «солевую инфракрасную оптику» из сульфида цинка , лития фторида , бария фторида . Солевая инфракрасная оптика является новым поколением инфракрасной оптики разработки Raytheon , которая по сравнению c классической ИК-оптикой из германия обладает маленьким поглощением инфракрасного излучения, что позволяет наблюдать очень тусклые объекты . В оригинале Raytheon создал эту технологию для высокочувствительных ГСН ракет, в частности для ПТРК Джавелин . Мирное применение этой технологии позволит James Webb наблюдать очень тусклые объекты как экзопланеты.
Для зеркала «Уэбба» используется особый тип бериллия . Он представляет собой мелкий порошок. Порошок помещается в контейнер из нержавеющей стали и прессуется в плоскую форму. После того как стальной контейнер удалён, кусок бериллия разрезается пополам, чтобы сделать две заготовки зеркала около 1,3 метра в поперечнике. Каждая заготовка зеркала используется для создания одного сегмента.
Процесс формирования зеркала начинается с вырезания излишков материала на оборотной стороне бериллиевой заготовки таким образом, что остаётся тонкая рёберная структура. Передняя же сторона каждой заготовки сглаживается с учётом положения сегмента в большом зеркале.
Затем поверхность каждого зеркала стачивается для придания формы, близкой к расчётной. После этого зеркало тщательно сглаживают и полируют. Этот процесс повторяется до тех пор, пока форма сегмента зеркала не станет близка к идеальной. Далее сегмент охлаждается до температуры −240 °C , и с помощью лазерного интерферометра производятся измерения размеров сегмента. Затем зеркало с учётом полученной информации проходит окончательную полировку.
По завершении обработки сегмента передняя часть зеркала покрывается тонким слоем золота для лучшего отражения инфракрасного излучения в диапазоне 0,6—29 мкм , и готовый сегмент проходит повторные испытания на воздействие криогенных температур .
Развёртыванием зеркала управляет система из 132 отдельных приводов и моторов, которая вначале формирует его из трёх крупных фрагментов, а затем правильно позиционирует каждый из 18 сегментов и задаёт им необходимую кривизну.
28 августа 2019 года сборка телескопа «Джеймс Уэбб» была завершена — специалисты впервые соединили основное зеркало с платформой, включающей в себя солнцезащитный экран .
10 июля 2017 года — начало финального испытания телескопа на воздействие криогенных температур со значением 37 К в космическом центре имени Джонсона в Хьюстоне , которое продлилось 100 дней .
Помимо испытаний в Хьюстоне аппарат прошёл серию механических испытаний в центре космических полётов Годдарда, в результате которых подтвердилось, что он сможет выдержать запуск на орбиту с помощью тяжёлой ракеты-носителя.
В начале февраля 2018 года гигантские зеркала и различные приборы были доставлены на предприятие компании Northrop Grumman в Редондо-Бич для последнего этапа сборки телескопа. Там шло сооружение двигательного модуля телескопа и его солнцезащитного экрана. Когда вся конструкция была собрана, её доставка была запланирована на морском судне из Калифорнии во французскую Гвиану .
JWST оснащён следующими научными инструментами для проведения исследования космоса:
Камера ближнего инфракрасного диапазона является основным блоком формирования изображения «Уэбба» и будет состоять из массива детекторов . Рабочий диапазон прибора составляет от 0,6 до 5 мкм . Его разработка поручена Аризонскому университету и Центру продвинутых технологий компании Lockheed Martin .
В задачи прибора входят:
Камера на самом деле является целым комплексом различных приборов :
Существенный момент для понимания, что камера не снимает снимки в бытовом понимании фотоаппаратов. Снимки, которые предназначены для широкой публики — это компьютерная модель, полученная как наложение множества снимков с разными фильтрами друг на друга и с компьютерной очисткой дифракции, насколько это возможно.
Спектрограф ближнего инфракрасного диапазона будет анализировать спектр источников, что позволит получать информацию как о физических свойствах исследуемых объектов (например, температуре и массе), так и об их химическом составе. Инструмент способен делать спектроскопию среднего разрешения в диапазоне длин волн 1—5 и низкого разрешения с длиной волны 0,6—5 .
Многие объекты, которые «Уэбб» будет изучать, излучают настолько мало света, что телескопу для анализа спектра необходимо собирать свет от них в течение сотен часов. Чтобы изучить тысячи галактик за 5 лет работы телескопа, спектрограф был разработан с возможностью наблюдения за 100 объектами на площади неба 3×3 угловых минуты одновременно. Для этого учёные и инженеры Годдарда разработали новую технологию микрозатворов для управления светом, входящим в спектрограф .
Суть технологии, позволяющей получать 100 одновременных спектров, заключается в микроэлектромеханической системе, именуемой «массив микрозатворов» ( англ. microshutter array ). У ячеек микрозатворов спектрографа NIRSpec есть крышки, которые открываются и закрываются под действием магнитного поля. Каждая ячейка размером 100 на 200 мкм индивидуально управляется и может быть открытой или закрытой, предоставляя или, наоборот, блокируя часть неба для спектрографа , соответственно.
Именно эта регулируемость позволяет прибору делать спектроскопию такого количества объектов одновременно. Поскольку объекты, которые будет исследовать NIRSpec , находятся далеко и тусклы, инструмент нуждается в подавлении излучения от более близких ярких источников. Микрозатворы работают подобно тому, как люди смотрят искоса, чтобы сосредоточиться на объекте, блокируя нежелательный источник света. Прибор уже разработан и в данный момент проходит испытания в Европе .
Прибор для работы в среднем диапазоне инфракрасного излучения ( 5—28 ) состоит из камеры с датчиком, имеющим разрешение 1024×1024 пикселя , и спектрографа .
MIRI состоит из трёх массивов мышьяко - кремниевых детекторов. Чувствительные детекторы этого прибора позволят увидеть красное смещение далёких галактик , формирование новых звёзд и слабо видимые кометы , а также объекты в поясе Койпера . Модуль камеры предоставляет возможность съёмки объектов в широком диапазоне частот с большим полем зрения, а модуль спектрографа обеспечивает спектроскопию среднего разрешения с меньшим полем зрения, что позволит получать подробные физические данные об удалённых объектах.
Номинальная рабочая температура для MIRI — 7 К . Такая температура не может быть достигнута использованием только пассивной системы охлаждения. Вместо этого, охлаждение производится в два этапа: установка предварительного охлаждения на основе пульсационной трубы охлаждает прибор до 18 К , затем теплообменник с ( эффект Джоуля — Томсона ) понижает температуру до 7 К .
MIRI разрабатывает группа под названием MIRI Consortium, состоящая из учёных и инженеров из стран Европы, команды сотрудников Лаборатории реактивного движения в Калифорнии и учёных из ряда институтов США .
Режимы работы прибора следующие .
Датчик точного наведения ( FGS ) и устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф ( NIRISS ) будут упакованы вместе в «Уэббе», но по сути это два разных устройства . Оба устройства разрабатываются Канадским космическим агентством , и они уже получили прозвище «канадские глаза» по аналогии с « канадской рукой ». Этот инструмент уже прошёл интегрирование со структурой ISIM в феврале 2013 года.
Датчик точного наведения ( FGS ) позволит «Уэббу» производить точное наведение, чтобы он мог получать изображения высокого качества.
Камера FGS может формировать изображение из двух смежных участков неба размером 2,4×2,4 угловых минуты каждый, а также считывать информацию 16 раз в секунду с небольших групп пикселей размером 8×8, чего достаточно для нахождения соответствующей опорной звезды с 95-процентной вероятностью в любой точке неба, включая высокие широты.
Основные функции FGS включают в себя:
Во время вывода на орбиту телескопа FGS также будет сообщать об отклонениях при развёртывании главного зеркала.
Устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф ( NIRISS ) работают в диапазоне 0,8—5,0 и является специализированным инструментом с тремя основными режимами, каждый из которых работает с отдельным диапазоном.
NIRISS будет использоваться для выполнения следующих научных задач:
11 июля 2022 года президент США Джо Байден представил в Белом доме первый снимок, созданный с помощью нового космического телескопа «Джеймс Уэбб» — изображение скопления галактик SMACS 0723, находящегося на расстоянии 4,6 млрд световых лет от Земли . Уже в первый официальный день работы телескопа — 12 июля 2022 года телескоп Джеймс Уэбб сделал сенсационные открытия. Так он обнаружил воду на планете WASP-96b , обращающейся вокруг жёлтого карлика WASP-96 ; спектральный анализ показал наличие паров воды в верхних слоях атмосферы WASP-96b, а также существование там облаков и скоплений тумана . Также он смог сделать первые снимки Вселенной: аппарату с помощью своего шестиметрового зеркала удалось заснять скопление галактик в 13 млрд световых лет от Солнца. Из других новых открытий телескопа — столкновение сразу пяти галактик .
В июле 2022 обнаружена галактика GLASS-z13 , самая древняя галактика из обнаруженных на момент наблюдения (красное смещение z = 13).
25 августа 2022 года «Джеймс Уэбб» впервые получил неопровержимые доказательства присутствия углекислого газа в атмосфере планеты за пределами Солнечной системы. Открытие было сделано при наблюдении за газовым гигантом WASP-39b, который вращается вокруг подобной Солнцу звезды на расстоянии в 750 световых лет от Солнца .
1 сентября 2022 года «Джеймс Уэбб» впервые получил снимки планеты за пределами Солнечной системы, — ею стал газовый гигант , обращающийся на расстоянии 92 астрономических единиц вокруг звезды спектрального класса А2V HIP 65426, находящейся в созвездии Центавра на расстоянии 385 световых лет от Солнца. У планеты нет каменистой поверхности и она не пригодна для жизни. Увиденная телескопом экзопланета была открыта в 2017 году с помощью инструментов Европейской Южной Обсерватории, входящих в расположенный в Чили проект VLT .
8 сентября 2022 года с помощью трёх инфракрасных приборов «Джеймса Уэбба»: ближней инфракрасной камеры (NIRCam), спектрографа ближнего инфракрасного диапазона (NIRSpec) и MIRI обнаружены тысячи новых звёзд в туманности Тарантул , находящейся в 161 тысяче световых лет от Земли в галактике Большое Магелланово облако . На полученных кадрах видны излучения от скопления молодых звёзд, столбы с формирующимися протозвёздами, а также пузыри газа от отдельных новорождённых звёзд .
Научный журнал Science назвал телескоп « Прорывом года » за грядущую революцию в представлениях человека о космосе , а Nature указал среди десяти важнейших новостных историй 2022 года . Научный журналист Александра Витце полагает, что Джеймс-Уэбб кардинально меняет астрономию, уже за первые месяцы своей работы давая неожиданные сведения для небесных тел от планет Солнечной системы до дальнего космоса; телескоп открывает совершенно новые области астрономии . Один из астрономов сообщил Science: «Каждый день я захожу на arXiv , а там фейерверки» .
Известный американский астроном проекта SETI , доктор наук, Сет Шостак , отмечает, что основной критикой James Webb является то, что без понятных налогоплательщикам глобальных открытий как обнаружение внеземной жизни, просто красивые фотографии космоса не стоят 10 миллиардов долларов. Портал James Webb Discovery, посвящённый каталогу открытий телескопа, в своей статье отмечает, что многие учёные относят телескоп к типичному проекту « », то есть дорогостоящим правительственным проектам, часто со связями с военными технологиями, где научная ценность наблюдений не соответствует астрономической цене проекта. Вместо этого на данные средства можно было бы реализовать много других научных проектов с более ценными результатами Массачусетский технологический институт в своей публикации отметил, что ожидаемые результаты открытия экзопланет и признаков жизни могут не состояться, так как модели анализа данных James Webb не соответствуют его реальной точности измерений, поэтому результаты могут больше ограничиваться красивыми фото до кардинального пересмотра системы анализа данных телескопа. Сет Шостак с этим согласен и отмечает, что реально ценные открытия из данных James Webb могу быть извлечены много лет спустя и неожиданным образом как экспериментальное подтверждение научных теорий, который не имеют прямой связи с заявленными целями проекта James Webb. Массачусетский технологический институт также отмечает, что хотя имеются уже значимые наблюдения как ранние галактики, но тревожным симптомом стал ажиотаж астрономов вокруг ресурса arXiv , где астрономы стремятся максимально быстро закреплять приоритет первого наблюдения того или иного объекта, но при этом стал систематически нарушаться принцип научного рецензирования статей, то есть астрономы стали часто использовать на arXiv черновики статей как готовые научные работы, что без рецензирования создает риск использования недостоверной научной информации по данным James Webb.
{{
cite news
}}
:
no-break space character в
|title=
на позиции 36 (
справка
)