Носители информации
- 1 year ago
- 0
- 0
Реиониза́ция (эпоха реионизации , повторная ионизация , вторичная ионизация водорода ) — период истории Вселенной (эпоха) между 550 млн лет и 800 млн лет после Большого Взрыва (примерно, красное смещение от до ) . Реионизации предшествуют Тёмные века , а после неё наступает текущая эра вещества . В эту эпоху образуются первые звёзды (звёзды популяции III), галактики , квазары , светом которых происходит реионизация водорода. Формируются скопления и сверхскопления галактик . Скорость реионизации зависела от темпов формирования объектов во Вселенной . За счёт гравитационного притяжения вещество во Вселенной начинает распределяться по обособленным скоплениям (« кластерам »). По всей видимости, первыми плотными объектами в тёмной Вселенной были квазары . Затем начали образовываться ранние формы галактик и газопылевых туманностей. Начинают образовываться первые звёзды, в которых происходит синтез элементов тяжелее гелия . В астрофизике любые элементы тяжелее гелия принято называть «металлами» (см. металличность ).
Звездообразование — астрофизический термин, обозначающий крупномасштабный процесс в галактике , при котором массово начинают формироваться звезды из межзвездного газа . Спиральные ветви , общая структура галактики , звёздное население , светимость и химический состав межзвёздной среды — все это результат данного процесса.
Размер области, охваченной звездообразованием, как правило, не превышает 100 пк. Однако встречаются комплексы со вспышкой звездообразования, называемые сверхассоциациями, размерами сопоставимые с неправильной галактикой.
В нашей и нескольких ближайших галактиках возможно непосредственное наблюдение процесса. В таком случае признаками происходящего звездообразования являются :
С увеличением расстояния уменьшается и видимый угловой размер объекта, и, начиная с некоторого момента, разглядеть отдельные объекты внутри галактики не представляется возможным. Тогда критериями протекающего в далёких галактиках звездообразования служат :
В общем виде процесс звездообразования можно разделить на несколько этапов: формирование крупных газовых комплексов (с массой 10 7 М ʘ ), появление в них гравитационно связанных молекулярных облаков, гравитационное сжатие наиболее плотных их частей до возникновения звёзд, нагрев газа излучением молодых звёзд и вспышки новых и сверхновых, уход газа.
Чаще всего области звездообразования можно найти :
Звездообразование является саморегулирующимся процессом: после формирования массивных звёзд и их короткой жизни происходит ряд мощных вспышек, уплотняющих и нагревающих газ. С одной стороны, уплотнение приводит к ускорению сжатия сравнительно густых облачков внутри комплекса, но с другой стороны нагретый газ начинает покидать область звездообразования, и чем больше его нагревают, тем быстрее он уходит.
Наиболее массивные звёзды живут сравнительно недолго — несколько . Факт существования таких звёзд означает, что процессы звёздообразования не завершились , а имеют место и в настоящую эпоху.
Звёзды, которых многократно превышает массу Солнца , большую часть жизни обладают огромными размерами, высокой светимостью и температурой . Из-за высокой температуры они имеют , и поэтому их называют голубыми сверхгигантами . Такие звёзды, нагревая окружающий межзвёздный газ, приводят к образованию газовых туманностей . За свою сравнительно короткую жизнь массивные звезды не успевают сместиться на значительное расстояние от места своего возникновения, поэтому светлые газовые туманности и голубые сверхгиганты могут рассматриваться в качестве индикаторов тех областей Галактики, где недавно происходило или происходит и сейчас образование звезд.
Молодые звёзды распределены в пространстве неслучайным образом. Существуют обширные области, где они совсем не наблюдаются, и районы, где их сравнительно много. Больше всего голубых сверхгигантов наблюдается в области Млечного Пути , то есть вблизи плоскости Галактики, там, где концентрация газопылевого межзвёздного вещества особенно высока.
Но и вблизи плоскости Галактики молодые звёзды распределены неравномерно. Они почти никогда не встречаются поодиночке. Чаще всего эти звезды образуют рассеянные скопления и более разреженные звёздные группировки больших размеров, названные звёздными ассоциациями , которые насчитывают десятки, а иногда и сотни голубых сверхгигантов. Самые молодые из звёздных скоплений и ассоциаций имеют возраст менее 10 млн лет. Почти во всех случаях эти молодые образования наблюдаются в областях повышенной плотности межзвёздного газа. Это указывает на то, что процесс звёздообразования связан с межзвёздным газом.
Примером области звёздообразования является гигантский газовый комплекс в созвездии Ориона. Он занимает на небе практически всю площадь этого созвездия и включает в себя большую массу нейтрального и , пыли и целый ряд светлых газовых туманностей. Образование звёзд в нём продолжается и в настоящее время.
Для начала процесса образования звезд из межзвездных газопылевых туманностей в галактиках требуется наличие вещества в космосе, которое находится в состоянии гравитационной неустойчивости по тем или иным причинам. Например, триггером могут служить близкие от облака взрывы сверхновых типов Ib\c и II, близость к массивным звездам с интенсивным излучением и наличие внешних магнитных полей, таких, как магнитное поле Млечного Пути . В основном процесс звездообразования происходит в облаках ионизированного водорода или областях H II . В зависимости от типа галактики , интенсивное образование звезд происходит либо в случайно распределенных областях, либо в областях, упорядоченных в спиральные структуры галактик. Звездообразование носит характер «локальных вспышек». Время «вспышки» непродолжительно, порядка нескольких миллионов лет, масштаб — до сотен парсек .
Состав областей межзвездного газа , из которых произошло формирование звезд, определяет их химический состав, что позволяет произвести датировку формирования конкретной звезды или отнести её к определённому типу звездных населений . Более старые звезды формировались в областях, в которых практически не было тяжелых элементов и, соответственно, лишены этих элементов в своих атмосферах , что определяется на основании спектральных наблюдений . Кроме спектральных характеристик, первоначальный химический состав звезды оказывает влияние на её дальнейшую эволюцию и, например, на температуру и цвет фотосферы .
По количеству звезд того или иного населения определяется скорость звездообразования в определённой области на протяжении продолжительного времени. Суммарную массу возникающих звёзд в один год называют темпом звездообразования (SFR, Star Formation Rate).
Процесс звездообразования является одним из основных предметов изучения дисциплины астрофизика . С точки зрения эволюции Вселенной является важным знание истории темпа звездообразования . По современным данным в Млечном Пути сейчас преимущественно образуются звезды с массами 1 — 10 M ☉ .
Базовые процессы звездообразования включают в себя возникновение гравитационной неустойчивости в облаке, формирование аккреционного диска и начало термоядерных реакций в звезде. Последнее также иногда называется рождением звезды . Начало термоядерных реакций, как правило, останавливает рост массы формирующегося небесного тела и способствует образованию новых звезд в её окрестности (см., например, Плеяды , Гелиосфера ).
В отличие от термина Звездообразование , термин Формирование звёзд относится к физическому процессу образования конкретных звёзд из газопылевых туманностей .
Возникновение галактик — появление крупных гравитационно -связанных скоплений материи , имевшее место в далёком прошлом Вселенной . Началось с конденсации нейтрального газа, начиная с окончания тёмных Веков . На данный момент удовлетворительной теории возникновения и эволюции галактик не существует. Есть несколько конкурирующих теорий, объясняющих это явление, но каждая имеет свои серьёзные проблемы.
Как показывают данные по реликтовому фону, в момент отделения излучения от вещества Вселенная была фактически однородна, флуктуации вещества были крайне малыми, и это представляет собой значительную проблему. Вторая проблема — ячеистая структура сверхскоплений галактик и одновременно сфероподобная — у скоплений меньших размеров. Любая теория, пытающаяся объяснить происхождение крупномасштабной структуры Вселенной, в обязательном порядке должна решить эти две проблемы (а также верно смоделировать морфологию галактик).
Современная теория формирования крупномасштабной структуры, как впрочем и отдельных галактик, носит названия «иерархическая теория». Суть теории сводится к следующему: вначале галактики были небольшие по размеру (примерно как Магелланово облако ), но со временем они сливаются, образуя все большие галактики.
В последнее время верность теории поставлена под вопрос и не в малой степени этому способствовал downsizing . Однако в теоретических исследованиях эта теория является доминирующей. Наиболее яркий пример подобного изыскания — Millennium simulation (Millennium run) .
Согласно первой, после возникновения первых звёзд во Вселенной начался процесс гравитационного объединения звёзд в скопления и далее в галактики. В последнее время эта теория поставлена под сомнение. Современные телескопы способны «заглянуть» так далеко, что видят объекты, существовавшие приблизительно через 400 тыс. лет после Большого взрыва . Обнаружилось, что на тот момент уже существовали сформировавшиеся галактики. Предполагается, что между возникновением первых звёзд и вышеуказанным периодом развития Вселенной прошло слишком мало времени, и галактики сформироваться не успели бы.
Любая теория, так или иначе, предполагает, что все современные образования, начиная от звезд и заканчивая сверхскоплениями, образовались в результате коллапса первоначальных возмущений. Классическим случаем является неустойчивость Джинса , в которой рассматривается идеальная жидкость, которая создаёт гравитационный потенциал в соответствии с законом тяготения Ньютона. В этом случае из уравнений гидродинамики и потенциала получается, что размер возмущения, при котором начинается коллапс, составляет :
где u s — скорость звука в среде, G — гравитационная постоянная, а ρ — плотность невозмущенной среды. Подобное рассмотрение можно провести и на фоне расширяющей Вселенной. Из-за удобства в этом случае рассматривают величину относительной флуктуации Тогда классические уравнения примут следующий вид :
У этой системы уравнений есть только одно решение, которое возрастает со временем. Это уравнение продольных колебаний плотности:
Из него, в частности, следует, что нестабильными являются флуктуации точно такого же размера, что и в статическом случае. А растут возмущения линейным образом или слабее, в зависимости от эволюции параметра Хаббла и плотности энергии.
Модель Джинса адекватно описывает коллапс возмущений в нерелятивистской среде, если их размер гораздо меньше текущего горизонта событий (в том числе и для тёмной материи во время радиационно-доминированной стадии). Для противоположных случаев необходимо рассматривать точные релятивистские уравнения. Тензор энергии-импульса идеальной жидкости с учётом малых возмущений плотности
ковариантно сохраняется, из чего следуют уравнения гидродинамики, обобщённые для релятивистского случая. Вместе с уравнениями ОТО они представляют исходную систему уравнений, определяющих эволюцию флуктуаций в космологии на фоне решения Фридмана .
Другая распространённая версия заключается в следующем. Как известно, в вакууме постоянно происходят квантовые флуктуации . Происходили они и в самом начале существования Вселенной, когда шёл процесс инфляционного расширения Вселенной, расширения со сверхсветовой скоростью. Это значит, что расширялись и сами квантовые флуктуации, причём до размеров, возможно, в 10 10 12 раз превышающих начальный. Те из них, которые существовали в момент прекращения инфляции, остались «раздутыми» и таким образом оказались первыми тяготеющими неоднородностями во Вселенной. Получается, что у материи было порядка 400 тыс. лет на гравитационное сжатие вокруг этих неоднородностей и образование газовых туманностей . А далее начался процесс возникновения звёзд и превращения туманностей в галактики.
Протогалактика ( «первобытная галактика» ; англ. protogalaxy, primeval galaxy ): в физической космологии — облако межзвёздного газа на стадии превращения в галактику . Считается, что темпы звездообразования в этот период галактической эволюции определяют спиральную или эллиптическую форму будущей звёздной системы (более медленное формирование звёзд из локальных сгустков межзвёздного газа обычно приводит к возникновению галактики спиральной формы). Термин «протогалактика» используется главным образом при описании ранних фаз развития Вселенной в рамках теории Большого взрыва .