Порождающее множество группы
- 1 year ago
- 0
- 0
Откры́тое мно́жество — это множество , каждый элемент которого входит в него вместе с некоторой окрестностью (в метрических пространствах и, в частности, на числовой прямой). Например, внутренность шара (без границы) является открытым множеством, а шар вместе с границей — не является открытым.
Термин «открытое множество» применяется к подмножествам топологических пространств и в этом случае никак не характеризует «само» множество (ни в смысле теории множеств , ни даже в смысле индуцированной на нём топологической структуры) . Открытое множество является фундаментальным понятием общей топологии .
Пусть есть некоторое подмножество евклидова пространства . Тогда называется открытым, если такое что , где — ε-окрестность точки
Иными словами, множество открыто, если любая его точка является внутренней .
Например, интервал как подмножество действительной прямой является открытым множеством. В то же время отрезок или полуинтервал не являются открытыми, так как точка принадлежит множеству, но ни одна её окрестность в этом множестве не содержится.
Пусть — некоторое метрическое пространство , и . Тогда называется открытым, если такое что , где — ε-окрестность точки относительно метрики . Другими словами, множество в метрическом пространстве называется открытым множеством, если каждая точка множества входит в это множество вместе с некоторым открытым шаром с центром в точке .
Обобщением приведённых выше определений является понятие открытого множества из общей топологии.
Топологическое пространство по определению содержит «перечень» своих открытых подмножеств — «топологию» , определённую на . Подмножество , такое, что оно является элементом топологии (то есть ), называется открытым множеством относительно топологии .
Важный подкласс открытых множеств образуют канонически открытые множества , каждое из которых является внутренностью ( открытым ядром ) какого-либо замкнутого множества (и, следовательно, совпадает с внутренностью своего замыкания). Всякое открытое множество содержится в наименьшем канонически открытом множестве — им будет внутренность замыкания множества .
Открытые множества были введены Рене-Луи Бэром в 1899 году.