Interested Article - Задача Тарского по школьной алгебре

Задача Тарского по школьной алгебре спрашивает, существует ли тождество над целыми положительными числами с использованием сложения, умножения и возведения в степень, которое не следует из набора тождеств, преподаваемых в школе. Решена в 1980 году Алекс Вилки, нашедшем пример тождества, которое не выводится из школьных аксиом.

Формулировка

Верно ли, что из следующих одиннадцати аксиом, которые мы будем называть школьными аксиомами :

следует любое тождество над целыми положительными числами с использованием сложения, умножения и возведения в степень?

История

Этот список из одиннадцати аксиом был выписан Рихардом Дедекиндом , хотя все эти тождества были известны задолго до этого.

Задача о выводимости всех тождеств была сформулирована Альфредом Тарским в 1960-х. Точная формулировка использует теорию моделей . В 1980-х она стала известна как задача Тарского по школьной алгебре .

В 1980 году Алекс Вилки доказал, что тождество

не выводится из набора школьных аксиом .

Примечания

  1. Richard Dedekind, Was sind und was sollen die Zahlen? , 8te unveränderte Aufl. Friedr. Vieweg & Sohn, Braunschweig (1960).
  2. A.J. Wilkie, On exponentiation – a solution to Tarski's high school algebra problem , Connections between model theory and algebraic and analytic geometry, Quad. Mat., 6 , Dept. Math., Seconda Univ. Napoli, Caserta, (2000), pp.107–129.
Источник —

Same as Задача Тарского по школьной алгебре