Interested Article - Копроизведение

Копроизведение ( категорная сумма ) семейства объектов — обобщение в теории категорий понятий дизъюнктного объединения множеств и топологических пространств и прямой суммы модулей или векторных пространств . Копроизведение семейства объектов — это «наиболее общий» объект, в который существует морфизм из каждого объекта семейства. Копроизведение объектов двойственно их произведению , то есть определение копроизведения можно получить из определения произведения обращением всех стрелок. Тем не менее, во многих категориях произведение и копроизведение объектов разительно отличаются.

Определение

Пусть — категория, — индексированное семейство её объектов. Копроизведение этого семейства — это объект , вместе с морфизмами , называемыми каноническими вложениями , такой что для любого объекта категории и семейства морфизмов существует единственный морфизм , такой что , то есть следующая диаграмма коммутативна для каждого :

Копроизведение семейства обычно обозначают

или

Иногда морфизм обозначают

чтобы подчеркнуть его зависимость от .

Копроизведение двух объектов обычно обозначают или , тогда диаграмма принимает вид

Соответственно, обозначают при этом , или .

Единственность результата операции можно альтернативно выразить как равенство , верное для любых .

Существует эквивалентное определение копроизведения. Копроизведение семейства — это такой объект , что для любого объекта функция , заданная как , биективна.

Примеры

Свойства

  • Если сумма объектов существует, то она единственна с точностью до изоморфизма .
  • Коммутативность :
  • Ассоциативность :
  • Если в категории существует начальный объект , то
  • Категория, в которой существуют копроизведения любого множества объектов — пример симметричной моноидальной категории .

Дистрибутивность

В общем случае существует канонический морфизм , где плюс обозначает копроизведение объектов. Это следует из существования канонических проекций и вложений и из коммутативности следующей диаграммы:

Универсальное свойство гарантирует при этом существование искомого морфизма. Категория называется , если в ней этот морфизм является изоморфизмом .

См. также

Примечания

  1. Lambek J., Scott P. J. Introduction to Higher-Order Categorical Logic. — Cambridge University Press, 1988. — С. 304.
  2. Букур И., Деляну А. Введение в теорию категорий и функторов. — М. : «Мир», 1972.

Литература

  • Маклейн С. Категории для работающего математика. — М. : Физматлит, 2004 [1998].
Источник —

Same as Копроизведение