Interested Article - Спектральная теорема

Спектральная теорема — класс теорем о матрицах линейных операторов , дающих условия, при которых такие матрицы могут быть диагонализированы , то есть представлены в виде диагональной матрицы в некотором базисе . Эти теоремы позволяют свести вычисления, включающие диагонализируемые матрицы к гораздо более простым вычислениям, использующим соответствующие диагональные матрицы.

Понятие диагонализации, достаточно простое для случая конечномерных векторных пространств , требует некоторых уточнений при переходе к бесконечномерным векторным пространствам . Вообще говоря, спектральная теорема выделяет класс линейных операторов , которые могут моделироваться так называемыми — то есть операторами вида для фиксированной функции . Более абстрактно, спектральная теорема является утверждением о коммутативных -алгебрах .

Примерами операторов, к которым может быть применена спектральная теорема являются самосопряжённые операторы или, более общо, — нормальные операторы в гильбертовых пространствах .

Спектральная теорема также даёт каноническое разложение объемлющего векторного пространства, называемое спектральным разложением или разложением по собственным значениям .

Конечномерный случай

Спектральная теорема для Эрмитовых матриц

Для любой эрмитовой матрицы на конечномерном векторном пространстве верно :

  1. Все собственные значения матрицы вещественны ;
  2. Собственные вектора , соответствующие различным собственным значениям, ортогональны ;
  3. Собственные вектора образуют ортогональный базис для всего пространства .

Спектральная теорема для унитарных матриц

Для любой унитарной матрицы на конечномерном векторном пространстве верно :

  1. Все собственные значения матрицы имеют абсолютные величины , равные ;
  2. Собственные вектора , соответствующие различным собственным значениям, ортогональны ;
  3. Собственные вектора образуют ортогональный базис для всего пространства .

Нормальные матрицы

Спектральная теорема может быть распространена на несколько более широкий класс матриц. Пусть является оператором на конечномерном пространстве со скалярным произведением. называют нормальным , если . Можно доказать, что является нормальным тогда и только тогда, когда он является унитарно диагонализируемым. В самом деле, в соответствии с разложением Шура мы имеем , где является унитарным оператором, а — верхнетреугольным. Поскольку является нормальным, то . Следовательно, является диагональным. Обратное не менее очевидно.

Другими словами, является нормальным тогда и только тогда, когда существует унитарная матрица такая, что , где является диагональной матрицей . При этом диагональные элементы матрицы Λ являются собственными значениями а векторы-столбцы матрицы являются собственными векторами (они, конечно, имеют единичную длину и попарно ортогональны). В отличие от эрмитова случая элементы матрицы не обязательно вещественны.

Спектральная теорема для компактных самосопряжённых операторов

В бесконечномерных гильбертовых пространствах утверждение спектральной теоремы для компактных самосопряжённых операторов выглядит в сущности также как в конечномерном случае.

Теорема
Пусть является компактным самосопряжённым оператором в гильбертовом пространстве . Существует ортонормированный базис пространства , состоящий из собственных векторов оператора . При этом все собственные значения вещественны.

Так же как и в случае эрмитовых матриц ключевым моментом является доказательство существования хоть одного собственного вектора. В бесконечномерном случае невозможно использовать определители для доказательства существования собственных векторов, но можно использовать соображения максимизации, аналогичные вариационной характеризации собственных значений. Приведённая выше спектральная теорема справедлива как для вещественных, так и для комплексных гильбертовых пространств.

Без предположения о компактности становится неверным утверждение о том, что всякий самосопряжённый оператор имеет собственный вектор.

Спектральная теорема для ограниченных самосопряжённых операторов

Следующее обобщение, которое мы рассмотрим, касается ограниченных самосопряжённых операторов в гильбертовых пространствах. Такие операторы могут не иметь собственных значений (например, таков оператор умножения на независимую переменную в пространстве , то есть .

Теорема
Пусть является ограниченным самосопряжённым оператором в гильбертовом пространстве . Тогда существует пространство с мерой , вещественнозначная измеримая функция на и унитарный оператор такие, что , где является , то есть .

С этой теоремы начинается обширная область исследований по функциональному анализу, называемая теорией операторов .

Аналогичная спектральная теорема справедлива для ограниченных нормальных операторов в гильбертовых пространствах. Единственная разница состоит в том, что теперь может быть комплекснозначной.

Альтернативная формулировка спектральной теоремы позволяет записать оператор как интеграл, взятый по спектру оператора, от координатной функции по . В случае когда рассматриваемый нормальный оператор является компактным, эта версия спектральной теоремы сводится к приведённой выше конечномерной спектральной теореме (с той оговоркой, что теперь линейная комбинация может содержать бесконечно много проекторов).

Спектральная теорема для общих самосопряжённых операторов

Многие важные линейные операторы, возникающие в математическом анализе , не являются ограниченными. Например, таковы дифференциальные операторы . Имеется спектральная теорема для самосопряжённых операторов, которая работает для неограниченных операторов. Например, любой дифференциальный оператор с постоянными коэффициентами унитарно эквивалентен оператору умножения (соответствующим унитарным оператором является преобразование Фурье , а соответствующий оператор умножения называют ).

Литература

  • Sheldon Axler, Linear Algebra Done Right , Springer Verlag, 1997
  • А. А. Кириллов, А. Д. Гвишиани, Теоремы и задачи функционального анализа , М.: Наука, 1979
  • Paul Halmos , , American Mathematical Monthly , 70 , no. 3 (1963), 241—247

Примечания

  1. A. Eremenko. (англ.) . Purdue science, Department of Mathematics (26 октября 2017). Дата обращения: 19 февраля 2019. 20 февраля 2019 года.
Источник —

Same as Спектральная теорема