Interested Article - Гауссовы целые числа

Решётка гауссовых чисел на комплексной плоскости

Га́уссовы це́лые чи́сла ( гауссовы числа , целые комплексные числа ) — это комплексные числа , у которых как вещественная, так и мнимая часть — целые числа .

Примеры: .

Впервые введены Гауссом в монографии «Теория биквадратичных вычетов» (1828—1832) . Множество гауссовых целых чисел принято обозначать отражая тем самым тот факт, что оно получается из множества целых чисел добавлением в него мнимой единицы и комбинаций её с целыми числами. Свойства гауссовых чисел похожи на свойства обычных целых чисел, однако имеются и существенные отличия.

Общие свойства

Определение и классификация

Формальное определение:

.

Множество содержит множество обычных целых чисел и представляет собой его расширение . Сумма, разность и произведение гауссовых чисел являются гауссовыми числами; для них, как и для целых чисел, сохраняются свойства ассоциативности , коммутативности и дистрибутивности — такая алгебраическая структура называется в общей алгебре коммутативным кольцом . Ввести в этом комплексном кольце упорядоченность , согласованную с порядком вещественных чисел , невозможно.

Сопряжённое к гауссовому числу есть также гауссово число .

Каждое гауссово число удовлетворяет квадратному уравнению:

Поэтому гауссово число есть целое алгебраическое число .

Норма

Норма для гауссова числа определяется как квадрат его модуля :

.

Свойства нормы :

  • Норма равна нулю только для нуля. В остальных случаях норма — положительное целое число.
  • Нормы сопряжённых чисел совпадают.
  • Норма обычного целого числа равна его квадрату.
  • Если норма нечётна, то она имеет вид , то есть при делении её на 4 получается остаток 1. Никакое гауссово число не может иметь норму вида .

Норма, как и модуль, обладает важным свойством мультипликативности :

Отсюда следует , что обратимыми элементами кольца ( делителями единицы ) являются те элементы, у которых норма равна 1, то есть .

Два гауссовых числа называются ассоциированными, если одно получается из другого умножением на делитель единицы. Легко видеть, что ассоциированность — отношение эквивалентности . Пример: гауссовы числа и ассоциированы, поскольку:

.

У каждого ненулевого гауссова числа есть три ассоциированных с ним. Нормы всех четырёх ассоциированных между собой чисел совпадают.

Теория делимости

Деление нацело

Деление нацело гауссовых чисел определяется обычным образом :

Говорят, что гауссово число делится (нацело) на гауссово число , если существует третье гауссово число такое, что . Обозначение: .

Произношение: один из трёх равносильных вариантов.

  • делится на ;
  • делит ;
  • — делитель .

Используются традиционные термины: делимое или кратное ( ), делитель ( ) и частное от деления ( ). Количество делителей гауссова числа всегда конечно, количество кратных бесконечно.

Пример: число 2 делится нацело на , потому что .

Все гауссовы числа делятся на делители единицы, поэтому любое гауссово число, отличное от делителей единицы, имеет как минимум 8 делителей: 4 делителя единицы и 4 их произведения на само это число. Эти делители называются тривиальными .

Деление нацело в по своим свойствам похоже на аналогичное деление целых чисел. Некоторые специфические для гауссовых чисел особенности :

  • Если гауссово число делится нацело на обычное целое число, то на это целое число делятся как вещественная, так и мнимая часть .
  • Если и , то эти числа ассоциированы.
  • Если , то любое из 3 чисел, ассоциированных с , делится на любое из 3 чисел, ассоциированных с .
  • Если делится на , то сопряжённое к делимому число делится на сопряжённое к делителю .
  • Все делители гауссова числа являются также делителями его нормы .
  • Норма гауссова числа чётна тогда и только тогда, когда это число делится на .
  • Если , то и норма делимого, в силу мультипликативности, делится нацело на норму делителя. При этом:
Решётка кратных для

Геометрическое представление делимости

У каждого гауссова числа есть 4 кратных с той же нормой (и, соответственно, тем же модулем) — это само и ассоциированные с ним 3 числа, которые получаются последовательным умножением на :

Но умножение на означает на комплексной плоскости поворот радиус-вектора числа на 90° против часовой стрелки, причём модуль результата будет тем же. Таким образом, все 4 числа образуют равносторонний крест (выделен красным на рисунке), центр и вершины которого кратны . Последовательно сдвигая этот крест во все стороны на одну из 4 величин, ассоциированных с , мы получаем на всей плоскости квадратную решётку, все узлы которой (вершины квадратов) кратны . Обратно, любое кратное совпадает с одним из узлов решётки. Ширина каждого квадрата решётки равна . Далее для краткости эта решётка будет называться «решёткой кратных» (или, если требуется уточнение, « -решёткой кратных »).

Пример: на рисунке одним из узлов решётки является число , кратное :

.

Простые гауссовы числа

Распределение гауссовых простых чисел на комплексной плоскости
Распределение гауссовых простых вблизи нуля

Простое гауссово число — это ненулевое число, не имеющее других делителей, кроме тривиальных. Число, не являющееся простым, называется составным . При этом делители единицы, подобно натуральной единице, не считаются ни простыми, ни составными числами .

Некоторые свойства простых гауссовых чисел:

  • Если — простое гауссово число, то противоположное и сопряжённое к нему гауссовы числа тоже являются простыми.
  • Если простое гауссово число является делителем произведения гауссовых чисел, то оно является делителем по крайней мере одного из сомножителей.
  • Норма любого простого гауссова числа, кроме ассоциированных с , всегда нечётна и поэтому имеет вид .

Натуральное простое число может не быть гауссовым простым числом. Например, числа 2 и 5 в уже не простые:

Разложение гауссовых чисел с нормой от 2 до 100 на простые гауссовы множители см. в таблице Факторизация гауссовых чисел .

Взаимно простые числа

Если гауссово число является делителем для двух гауссовых чисел и , оно называется их общим делителем. Множество общих делителей двух чисел всегда содержит 4 делителя единицы; если других общих делителей нет, эти числа называются взаимно простыми .

Отметим, что если нормы гауссовых чисел взаимно просты как целые числа, то и сами числа взаимно просты как гауссовы числа. Обратное неверно: нормы взаимно простых гауссовых чисел могут иметь общие делители — например, и взаимно просты, но их нормы совпадают и поэтому не взаимно просты.

Укажем два свойства, аналогичные свойствам целых чисел.

  • Если каждое из двух гауссовых чисел взаимно просто с гауссовым числом то и их произведение тоже взаимно просто с .
  • Если и при этом взаимно просто с , то .

Критерий Гаусса

Гаусс указал определяющие признаки простого числа в .

Гауссово число является простым тогда и только тогда, когда:

  • либо одно из чисел нулевое, а другое — целое простое число вида ;
  • либо оба не нули и норма — простое натуральное число.

Примеры простых гауссовых чисел:

  • к первой части критерия: ;
  • ко второй части критерия: .

Некоторые источники для большей ясности разделяют вторую часть критерия на две :

  1. Числа, ассоциированные с . Их норма равна 2.
  2. Числа, норма которых есть простое натуральное число вида .

Сам Гаусс такого разделения не делал .

Следствия:

  • Никакое простое натуральное число вида не может быть простым гауссовым числом. Простые натуральные числа вида являются и простыми гауссовыми числами.
  • Норма простого гауссова числа является либо простым натуральным числом, либо квадратом простого натурального числа .
  • Простое натуральное число вида можно представить как произведение сопряжённых простых гауссовых чисел или, что то же самое, как сумму квадратов . Этот факт известен как Теорема Ферма — Эйлера . Именно при исследовании данной темы, а также теории биквадратичных вычетов, Гаусс с успехом применил целые комплексные числа. Обратно, если простое натуральное число представимо в виде суммы натуральных квадратов, то в оно составное и разлагается на два сопряжённых гауссовых простых .
  • Каждое простое гауссово число является делителем одного и только одного простого натурального числа . Это значит, что разлагая натуральные простые на гауссовы множители, получаются все гауссовы простые.

Разложение на простые множители

В имеет место аналог основной теоремы арифметики : каждое гауссово число, не являющееся нулём или делителем единицы, разлагается на простые множители, причём это разложение однозначно с точностью до порядка и ассоциированности множителей .

Пример: . Множители этих двух, по виду разных, разложений попарно ассоциированы: так что однозначность не нарушается.

Чтобы практически разложить гауссово число на простые множители, можно использовать приведённое выше свойство: все делители гауссова числа являются также делителями его нормы. При этом норма содержит также «лишние» простые множители, соответствующие сопряжённому к числу.

Таким образом, начать следует с разложения нормы числа на простые натуральные множители .

  1. Множитель 2, если он присутствует в разложении нормы, разлагается как . Следует включить в результирующее разложение те из этих множителей (в соответствующей степени), на которые делится нацело.
  2. Кроме 2, остальные множители нормы — нечётные. Множитель вида является простым гауссовым числом, поэтому он делит не только норму , но и само . Но тогда этот множитель делит и сопряжённое число . Отсюда вытекает, что множитель вида входит в разложение нормы всегда в чётной степени, а в разложение самого — в степени, вдвое меньшей.
  3. Множитель вида можно разложить на произведение сопряжённых простых гауссовых чисел (или, что то же самое, на сумму квадратов натуральных чисел). И здесь следует делением выяснить, какой из сомножителей относится к исходному числу, а какой — к сопряжённому.

Например, для разложения на простые множители (норма — 225) выделяются простые натуральные множители: . По предыдущему, . При этом делится только на и не делится на . Частное от деления на равно поэтому окончательный результат:

.

Теория сравнений

Сравнения по гауссовому модулю

Понятие сравнения по модулю определяется в аналогично тому, как это делается для целых чисел :

Пусть — некоторое гауссово число. Два гауссовых числа называются сравнимыми по модулю , если разность делится (нацело) на . Запись: .

Свойства сравнений в в основном такие же, как у целых чисел. Отношение сравнимости есть отношение эквивалентности , поэтому разбивается на непересекающиеся классы вычетов — каждый такой класс содержит все сравнимые друг с другом (по заданному модулю) гауссовы числа. Для классов, как в случае целых чисел, можно определить сложение и умножение, так что получается кольцо вычетов по гауссову модулю.

Пример. Возьмём в качестве модуля сравнения . Тогда разбивается на два класса вычетов: числа , у которых одинаковой чётности, попадут в один класс (содержащий кратные для модуля), а числа с разной чётностью — в другой.

У гауссова сравнения имеются некоторые особенности. Например, если для целых чисел по модулю 3 существуют 3 класса вычетов с представителями то для гауссовых чисел по тому же модулю количество классов значительно больше. Их представители:

Как обнаружил Гаусс, кольцо вычетов по модулю содержит элементов . Этот факт вынуждает модифицировать некоторые классические теоремы. Например, малая теорема Ферма для целых чисел утверждает, что делится на для любого простого и натурального . Для гауссовых чисел это неверно, даже если ограничиться натуральными значениями ; например, для целых чисел всегда делится на 3, а для гауссовых , и это значение на 3 не делится. Модифицированный аналог малой теоремы Ферма формулируется следующим образом :

Для простого гауссова числа и любого гауссова числа
делится на .


На том же примере с результат: — делится на 3.

Назовём класс вычетов по модулю содержащий число обратимым , если сравнение имеет решение относительно . Класс обратим тогда и только тогда, когда гауссовы числа и взаимно просты . В частности, если модуль сравнений — гауссово простое число, то каждый ненулевой класс вычетов имеет обратный элемент, а это значит, что классы вычетов по простому модулю в , как и в образуют поле .

Функция Эйлера для гауссовых чисел

Введём аналог функции Эйлера для гауссовых чисел. Определение для целых чисел не годится хотя бы потому, что содержащееся в нём выражение «от до » не имеет смысла для комплексных чисел. Новое определение :

Функция Эйлера для гауссова числа определяется как число обратимых классов вычетов по модулю .

Определённая таким образом функция, как и её прототип для целых чисел, мультипликативна , поэтому достаточно знать её значения для простых чисел и их натуральных степеней. Если — простое гауссово число, то :

Пример: .

Теперь можно обобщить приведённую в предыдущем разделе малую теорему Ферма на случай произвольного (не обязательно простого) модуля сравнения, то есть привести аналог теоремы Эйлера :

Если гауссово число взаимно просто с модулем , то:

Сравнение по модулю

Геометрическое представление сравнения по модулю

Рассмотрим для примера сравнения по модулю . Как сказано в разделе о геометрическом представлении делимости, можно разбить комплексную плоскость на квадраты так, что узлы этой решётки (вершины квадратов) представляют всевозможные комплексные кратные . Тогда, по определению, числа сравнимы по модулю , если их разность совпадает с одним из узлов решётки кратных.

Каждый квадрат решётки получается из любого другого квадрата сдвигом (переносом) на величину, кратную поэтому разность любой точки квадрата и результата её сдвига тоже кратна . Отсюда следует окончательный вывод :

Гауссовы числа сравнимы по модулю тогда и только тогда, когда они занимают одно и то же относительное положение в своих квадратах решётки кратных.

Например, сравнимы все центры квадратов, или все середины их соответствующих сторон и т. п.

Деление с остатком

Определение

В кольце можно определить деление с остатком (на любое ненулевое гауссово число), потребовав, чтобы норма остатка была меньше нормы делителя :

Любое гауссово число можно разделить с остатком на любое ненулевое гауссово число , то есть представить в виде:

где частное и остаток — гауссовы числа, причём .

Несложно показать, что в качестве частного от деления с остатком можно взять гауссово число, ближайшее к частному от обычного деления комплексных чисел .

Необходимо отметить, что условия «норма остатка меньше нормы делителя» недостаточно для того, чтобы гарантировать однозначность остатка от деления, поэтому в остаток неоднозначен. Например, можно разделить на тремя способами:

Можно гарантировать только то, что все остатки попадают в один класс вычетов по модулю делителя. Впрочем, похожая ситуация имеет место и для обычных целых чисел — например, разделить с остатком 8 на 3 можно двумя способами: или (оба остатка по модулю меньше делителя) поэтому в арифметике целых чисел введено дополнительное условие, обеспечивающее однозначность операции: остаток должен быть неотрицательным.

Пример . Для деления с остатком на вначале находится частное от обычного комплексного деления:

Ближайшее к результату гауссово число есть тогда остаток равен . В итоге:

Для гауссовых чисел имеет место аналог китайской теоремы об остатках , поскольку она доказывается с помощью алгоритма Евклида .

Геометрическое представление

Из определения деления с остатком на следует, что , то есть модуль остатка есть расстояние между комплексными числами и . Другими словами, есть расстояние от делимого до одного из узлов -решётки кратных. Требование «норма остатка меньше нормы делителя» эквивалентно условию . Отсюда вытекает:

Деление с остатком на имеет столько решений, сколько узлов -решётки кратных находится от делимого на расстоянии меньше .

Распределение числа решений задачи деления с остатком

В вышеприведённом примере деления на ближайшими к делимому являются кратные делителя, образующие вершины квадрата решётки, содержащего делимое:

Все они находятся от делимого на расстоянии меньше, чем . Четвёртая вершина квадрата удалена от делимого больше чем на . Поэтому данная задача деления с остатком имеет три решения.

В общем случае, проведя из вершин квадрата -решётки кратных дуги радиусом мы получим фигуру, показанную на рисунке. Если делимое находится в центральной области (красная зона), оно удалено от всех вершин менее чем на и деление с остатком может быть выполнено четырьмя способами. Если делимое находится в одном из «лепестков» (синяя зона), то одна из вершин отпадает, и число решений равно трём. Для белой зоны получаем два решения. Наконец, если делимое совпадает с одной из вершин, то остаток равен нулю, и решение единственно.

Наибольший общий делитель

Кольцо гауссовых чисел является евклидовым , и в нём всегда можно определить наибольший общий делитель , определённый однозначно с точностью до делителей единицы .

Наибольшим общим делителем НОД для гауссовых чисел и , хотя бы одно из которых ненулевое, называется их общий делитель, который делится на любой другой общий делитель и .

Эквивалентное определение: НОД есть тот общий делитель , у которого норма максимальна .

Свойства НОД
  • Если известен некоторый НОД, то любое из трёх чисел, ассоциированных с ним, также будет НОД. В частности. если один из НОД — делитель единицы, то такими же будут и остальные три НОД.
  • Гауссовы числа взаимно просты тогда и только тогда, когда их НОД есть делитель единицы.
  • Имеет место аналог соотношения Безу :

Пусть — гауссовы числа, и хотя бы одно из них не нуль. Тогда существуют такие гауссовы числа , что выполняется соотношение:

НОД
Другими словами, наибольший общий делитель двух гауссовых чисел можно всегда представить как линейную комбинацию этих чисел с гауссовыми коэффициентами.
  • Следствие соотношения Безу : если гауссовы числа взаимно просты, то уравнение относительно имеет решение в . Вместо 1 в приведённом уравнении может стоять любой другой делитель единицы, теорема при этом останется верной.

Алгоритм Евклида и практическое вычисление НОД

Для определения НОД в удобно использовать алгоритм Евклида , вполне аналогичный применяемому для целых чисел. НОД получается в этой схеме как последний ненулевой остаток . Алгоритм Евклида можно также использовать для нахождения коэффициентов в соотношении Безу .

Пример 1. Найдём НОД для и .

Шаг 1: (разделили с остатком первое число на второе)
Шаг 2: (разделили с остатком предыдущий делитель на остаток предыдущего шага)
Шаг 3: (то же действие)
Шаг 4: (то же действие, деление выполнилось нацело)

Отметим, что на каждом шаге норма остатка монотонно уменьшается. Последний ненулевой остаток равен , это делитель единицы, поэтому заключаем, что исследуемые числа взаимно просты.

Пример 2. Найдём НОД для и .

Шаг 1:
Шаг 2:
Шаг 3: (деление выполнилось нацело)

Последний ненулевой остаток равен , это и есть искомый НОД. Последовательно подставляя вместо левых частей равенств правые (начиная с предпоследнего равенства, снизу вверх), получается соотношение Безу для НОД:

Некоторые приложения

Гаусс использовал открытую им алгебраическую структуру для глубокого исследования биквадратичных вычетов. Можно указать и другие области успешного применения гауссовых чисел . Примечательно, что значительная их часть относится к теории не комплексных, а натуральных чисел.

Разложение натуральных чисел на сумму двух квадратов

Из критерия Гаусса вытекает, что простое натуральное число вида можно представить в виде суммы квадратов двух натуральных чисел, причём единственным способом. Пример: .

Разложение натуральных чисел другого вида не всегда возможно — например, и другие числа вида нельзя представить в виде суммы квадратов двух натуральных чисел. Составные числа могут также иметь более одного варианта разложения, например : . Общая теорема: натуральное число представимо в виде суммы двух квадратов тогда и только тогда, когда в его каноническом разложении все простые множители вида входят в чётных степенях .

Пример: нельзя представить в виде суммы квадратов, потому что число 3 (как и 7) входит в него с нечётной степенью. Но представить можно: .

Подсчёт числа представлений в виде суммы двух квадратов

Число представлений натурального числа в виде суммы квадратов (или, что то же самое, число гауссовых чисел с нормой ) можно определить следующим образом . Разложим на простые натуральные множители:

Здесь — множители вида а — множители вида . Тогда возможны 3 случая.

  1. Если хотя бы один показатель степени нечётный, число не может быть представлено в виде суммы квадратов.
  2. Пусть все чётные. Окончательная формула зависит от чётности . Если все они тоже чётные, то формула имеет вид:
  1. Если не все чётные, то формула немного отличается:

Теория пифагоровых троек

Пифагорова тройка — это одно из целочисленных решений уравнения:

.

Общее решение уравнения зависит от двух целых параметров :

.

Для генерации пифагоровых троек можно использовать такой приём. Пусть — произвольное гауссово число, у которого обе компоненты ненулевые. Возведя это число в квадрат, получается некоторое другое гауссово число . Тогда тройка будет пифагоровой .

Пример: для исходного числа получается пифагорова тройка .

Решение диофантовых уравнений

Решение многих диофантовых уравнений удаётся найти, если привлечь аппарат гауссовых чисел. Например, для уравнения несложные преобразования дают два типа целых взаимно простых решений , зависящих от целых параметров :

В 1850 году Виктор Лебег, используя гауссовы числа, исследовал уравнение и доказал его неразрешимость в натуральных числах. Другими словами, среди натуральных чисел вида нет ни одного полного куба или иной степени выше второй .

Нерешённые проблемы

  • Найти количество гауссовых чисел, норма которых меньше заданной натуральной константы . В эквивалентной формулировке эта тема известна как « проблема круга Гаусса » в геометрии чисел .
  • Найти прямые на комплексной плоскости, содержащие бесконечно много простых гауссовых чисел. Две такие прямые очевидны — это координатные оси; неизвестно, существуют ли другие .
  • Вопрос, известный под названием « ров Гаусса »: можно ли дойти до бесконечности, переходя от одного простого гауссова числа к другому скачками заранее ограниченной длины? Задача поставлена в 1962 году и до сих пор не решена .

Вариации и обобщения

Треугольная решётка чисел Эйзенштейна

Ещё одним исторически важным евклидовым кольцом, похожим по свойствам на целые числа, стали « целые числа Эйзенштейна ».

Гауссовы рациональные числа, обозначаемые — это комплексные числа вида , где рациональные числа . Это множество замкнуто относительно всех 4 арифметических операций, включая деление, и поэтому является полем , расширяющим кольцо гауссовых чисел.

История

В 1820-х годах Карл Фридрих Гаусс исследовал биквадратичный закон взаимности , результатом стала монография «Теория биквадратичных вычетов» (1828—1832). Именно в этом труде целые комплексные числа доказали свою полезность для решения задач теории чисел , хотя формулировка этих задач никак не связана с комплексными числами. Гаусс писал, что «естественный источник общей теории следует искать в расширении области арифметики» .

Карл Фридрих Гаусс в 1828 году

В книге Гаусса было показано, что новые числа по своим свойствам во многом напоминают обычные целые числа. Автор описал четыре делителя единицы , определил отношение ассоциированности, понятие простого числа, дал критерий простоты и доказал аналоги основной теоремы арифметики , малой теоремы Ферма . Далее Гаусс подробно рассмотрел вычеты по комплексному модулю, индексы и первообразные корни . Главным достижением построенной теории стал биквадратичный закон взаимности, который Гаусс обещал доказать в следующем томе; этот том так и не был опубликован, но в рукописях Гаусса была обнаружена подробная схема строгого доказательства .

Гаусс использовал введённые им числа также и в других своих трудах, например, по алгебраическим уравнениям . Идеи Гаусса были развиты в трудах Карла Густава Якоба Якоби и Фердинанда Готтхольда Эйзенштейна . В середине XIX века Эйзенштейн, Дирихле и Эрмит ввели и исследовали обобщённое понятие целого алгебраического числа .

Кольцо гауссовых целых чисел было одним из первых примеров алгебраической структуры с непривычными свойствами. Со временем было открыто большое количество структур такого типа, а в конце XIX века появилась абстрактная алгебра , изучающая алгебраические свойства отдельно от объектов-носителей этих свойств.

Примечания

  1. .
  2. , с. 655—754.
  3. , с. 88—92.
  4. , с. 146.
  5. , с. 23.
  6. , с. 27—28.
  7. , с. 147—149.
  8. , с. 29.
  9. , с. 32.
  10. , с. 150.
  11. , с. 155.
  12. , с. 156.
  13. , с. 41, 44.
  14. , с. 10.
  15. , с. 698.
  16. , с. 158.
  17. , Глава 9.
  18. , с. 33—34.
  19. , Глава 6.
  20. , Глава 7.
  21. , Глава 3.
  22. , с. 30—31.
  23. , с. 35—36.
  24. , Глава 4.
  25. , Глава 5.
  26. , с. 153—155.
  27. , Глава 8.
  28. , с. 164—166.
  29. , с. 162—163.
  30. Conway J. H., Sloane N. J. A. Sphere Packings, Lattices and Groups. — Springer-Verlag. — P. 106.
  31. последовательность в OEIS
  32. Ribenboim, Paulo. The New Book of Prime Number Records, Ch.III.4.D Ch. 6.II, Ch. 6.IV. — 3rd ed. — New York: Springer, 1996. — ISBN 0-387-94457-5 .
  33. Guy Richard K. Unsolved problems in number theory. — 3rd ed. — New York: Springer, 2004. — P. 55—57. — ISBN 978-0-387-20860-2 .
  34. , с. 189.

Литература

  • Айерлэнд К., Роузен М. Классическое введение в современную теорию чисел. — М. : Мир, 1987. — 416 с.
  • Алфутова Н. Б, Устинов А. В. Алгебра и теория чисел. Сборник задач для математических школ. — 3-е изд., испр. и доп. — М. : МЦНМО, 2009. — 336 с. — ISBN 978-5-94057-550-4 .
  • Гаусс К. Ф. Труды по теории чисел. — М. : Изд-во АН СССР, 1959. — С. 695—754.
  • Гауссово число // Математическая энциклопедия (в 5 томах). — М. : Советская Энциклопедия , 1977. — Т. 1.
  • Калужнин Л. А. Основная теорема арифметики. — М. : Наука, 1969. — 32 с. — ( Популярные лекции по математике ).
  • Колмогоров А. Н., Юшкевич А. П. (ред.). Математика XIX века. Математическая логика, алгебра, теория чисел, теория вероятностей. — М. : Наука, 1978. — Т. I.
  • Кузьмин Р. О., Фаддеев Д. К. Алгебра и арифметика комплексных чисел. Пособие для учителей. — М. : Учпедгиз, 1939. — 187 с.
  • Окунев Л. Я. Целые комплексные числа. — М. : Гос. уч.-пед. изд-во Наркомпроса РСФСР, 1941. — 56 с.
  • Сендеров В., Спивак А. // Квант . — 1999. — № 3 . — С. 14—22 .
  • Hardy G. H., Wright E. M. An introduction to the theory of numbers (англ.) . — 4th edition. — Oxford.: Oxford University Press, 1968. — 421 p.

Ссылки

  • (англ.) . Дата обращения: 11 сентября 2013. Архивировано из 14 июня 2006 года.
  • Butler, Lee A. (англ.) . Дата обращения: 16 января 2017.
  • Conrad, Keith. (англ.) . Дата обращения: 11 сентября 2013.
Источник —

Same as Гауссовы целые числа