Interested Article - Алгебра над полем

Алгебра над полем — это векторное пространство , снабжённое билинейным произведением. Это значит, что алгебра над полем является одновременно векторным пространством и кольцом , причём эти структуры согласованы. Обобщением этого понятия является алгебра над кольцом , которая, вообще говоря, является не векторным пространством, а модулем над некоторым кольцом.

Алгебра называется ассоциативной, если операция умножения в ней ассоциативна ; соответственно, алгебра с единицей — алгебра, в которой существует нейтральный относительно умножения элемент. В некоторых учебниках под словом «алгебра» подразумевается «ассоциативная алгебра», однако неассоциативные алгебры также представляют определённую важность.

Определение

Пусть — векторное пространство над полем , снабжённое операцией , называемой умножением. Тогда является алгеброй над , если для любых выполняются следующие свойства:

  • .

Эти три свойства можно выразить одним словом, сказав, что операция умножения является билинейной . В случае алгебр с единицей часто дают следующее эквивалентное определение:

Алгебра с единицей над полем — это кольцо с единицей , снабжённое гомоморфизмом колец с единицей , таким, что принадлежит центру кольца (то есть множеству элементов, коммутирующих по умножению со всеми остальными элементами). После этого можно считать, что является векторным пространством над со следующей операцией умножения на скаляр : .

Связанные определения

  • Гомоморфизм -алгебр — это -линейное отображение, такое что для любых из области определения.
  • Подалгебра алгебры над полем — это линейное подпространство , такое что произведение любых двух элементов из этого подпространства снова ему принадлежит. Другими словами, подалгеброй линейной алгебры над полем называется её подмножество если оно является подкольцом кольца и подпространством линейного пространства .
    • Элемент алгебры называется алгебраическим , если он содержится в конечномерной подалгебре.
    • Алгебра называется алгебраической , если все её элементы алгебраические.
  • Левый идеал -алгебры — это линейное подпространство, замкнутое относительно умножения слева на произвольный элемент кольца. Соответственно, правый идеал замкнут относительно правого умножения; двусторонний идеал — идеал, являющийся левым и правым. Единственное отличие этого определения от определения идеала кольца — это требование замкнутости относительно умножения на элементы поля, в случае алгебр с единицей это требование выполняется автоматически.
  • Алгебра с делением — это алгебра над полем, такая что для любых её элементов и уравнения и разрешимы . В частности, ассоциативная алгебра с делением, имеющая единицу, является телом .
  • Центр алгебры — это множество элементов , таких что для любого элемента .

Примеры

Ассоциативные алгебры

Неассоциативные алгебры

Структурные коэффициенты

Умножение в алгебре над полем однозначно задаётся произведениями базисных векторов. Таким образом, для задания алгебры над полем достаточно указать её размерность и структурных коэффициентов , являющихся элементами поля. Эти коэффициенты определяются следующим образом:

где — некоторый базис . Различные множества структурных коэффициентов могут соответствовать изоморфным алгебрам.

Если — только коммутативное кольцо , а не поле, это описание возможно, только когда алгебра является свободным модулем .

См. также

Примечания

  1. Скорняков Л. А. Элементы алгебры. - М., Наука, 1986. - с. 190
  2. Джекобсон Н. . — М. : ИЛ, 1961. — 392 с.
  3. Кузьмин Е. Н. от 14 июля 2015 на Wayback Machine

Литература

  • Скорняков Л. А., Шестаков И. П. . Глава III. Кольца и модули // Общая алгебра / Под общ. ред. . — М. : Наука , 1990. — Т. 1. — С. 291—572. — 592 с. — (Справочная математическая библиотека). — 30 000 экз. ISBN 5-02-014426-6 .
Источник —

Same as Алгебра над полем