Interested Article - Вероятностная логика

Вероятностная логика логика , в которой высказываниям приписываются не исключительно значения истины и лжи как в двузначной логике , а непрерывная шкала значений истинности от 0 до 1, так, что ноль соответствует невозможному событию, единица — практически достоверному . Значения истинности в вероятностной логике называются вероятностями истинности высказываний, степенями правдоподобия или подтверждения .

Проблематика вероятностной логики начала развиваться в древности, например, Аристотелем и в новое время Г. В. Лейбницем , Дж. Булем , У. С. Джевонсом , Дж. Венном , в дальнейшем Х. Райхенбахом , Р. Карнапом , Ч. С. Пирсом , Дж. М. Кейнсом и другими, в России — П. С. Порецким , С. Н. Бернштейном и другими .

Древнегреческий философ, глава третьей платоновской академии Карнеад в своих лекциях ученикам о трёх ступенях вероятности: 1) просто вероятное, 2) вероятное и непротиворечивое, 3) вероятное, непротиворечивое и проверенное. Лейбниц одним из серьёзных недостатков старой логики считал отсутствие в ней исследования степени вероятности. Сам он определял вероятность, как меру нашего знания о тех или иных объектах.

Всё, что находится между истиной и ложью называется в вероятностной логике гипотезой . Относительно каждого неисследованного объекта можно выдвинуть несколько гипотез. Из практики видно, что гипотезы могут отличаться одна от другой степенью вероятности, то есть степенью приближения к достоверности. Поэтому первый вопрос, который здесь возникает, это — вопрос о том, каково же различие между достоверным, то есть твёрдо установленным знанием и вероятным знанием. Достоверное знание не имеет степеней: оно либо истинно, либо ложно. Так, знание о том, что «первым космонавтом стал советский гражданин» и что «американская станция опустилась на Луну через несколько дней после советской станции», в одинаковой степени достоверны. Вероятное же знание, как это заметил Карнеад, различается степенью приближения к достоверности: от полной невероятности до полной достоверности.

Второй вопрос: какие формы мышления дают достоверное знание и какие — вероятное? Из традиционной логики известно, что дедуктивные выводы вполне достоверны, если, конечно, истинны все входящие в них посылки и если в процессе умозаключения не нарушены законы логики . Близкими к достоверности могут быть выводы и ряда выводов неполной индукции , в частности, вывод научной индукции . Но если обобщение всё же не идёт далее неполной индукции, достоверность его может быть опровергнута первым же примером, который противоречит данному обобщению . Окончательная достоверность всегда достигается единством индукции и дедукции . Вероятностная логика, исследуя процесс вывода общих положений из единичных данных наблюдения и эксперимента, использует правила индуктивной логики, в частности, методы исследования причинных связей, поэтому в литературе по логике её называют современной формой индуктивной логики. Как же устанавливается точное числовое определение вероятности одних высказываний относительно других? Однозначного ответа на этот вопрос нет. В вероятностной логике по этому вопросу идут ещё дискуссии. Но ясно одно, что степень вероятности гипотезы зависит от состояния накопленных знаний. В литературе по проблемам вероятностной логике вероятность поэтому рассматривается как функция от двух аргументов — самой гипотезы и имеющегося знания, причём отношение гипотезы к действительности не непосредственно, а через другие высказывания, выражающие наши знания.

При этом вероятность может выступать в двух видах:

  • вероятность может быть мерой субъективной уверенности. Например, в наступлении того или иного события («вероятно завтра будет пасмурно»), основанной на знании субъектом некоторых примет (по цвету облаков при заходе солнца, по влажности воздуха и т. п.). В таких случаях дать какую-то количественную оценку степени вероятности очень трудно.
  • математическая вероятность, которая является «объективной характеристикой степени возможности появления определённого события в каких-то заранее заданных условиях, которые могут повторяться неограниченное число раз». Здесь вступают в силу статистические закономерности , когда состояние той или системы определяется не однозначно, а лишь с определённой вероятностью.

Иногда вероятность подсчитывается по следующему правилу: «при общем числе равноправных исходов опыта, равном n, вероятность некоторого события A, определяемого исходом опыта, равна отношению m/n, где m — число исходов, благоприятствующих этому событию». Так например, вероятность того, что при бросании шестигранного кубика с цифрами 1-6 выпадет сторона с цифрой 1, равна 1/6.

Исследованием математической вероятности занимается теория вероятностей . Предметом вероятностной логики является оценка истинности гипотез, изучение закономерностей вывода общих положений из единичных данных наблюдения и эксперимента. Во всех системах вероятностной логики вычисление вероятностей сложных гипотез осуществляется с помощью математического исчисления вероятностей .

В настоящее время вероятностная логика находит наибольшее применение в качестве современной формы индуктивной логики . Новым стимулом к возникновению систем вероятностной логики послужил прогресс в развитии приложений к искусственному интеллекту .

См. также

Примечания

  1. Вероятностная логика // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров . — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  2. Под редакцией А.А. Ивина. Вероятностная логика // Философия: Энциклопедический словарь. — М.: Гардарики . — 2004. / Философия: Энциклопедический словарь. — М.: Гардарики. Под редакцией А. А. Ивина. 2004.
  3. В. Л. Васюков. // Новая философская энциклопедия : в 4 т. / пред. науч.-ред. совета В. С. Стёпин . — 2-е изд., испр. и доп. — М. : Мысль , 2010. — 2816 с.
  4. (недоступная ссылка) / Советский философский словарь, 1974 г.
  5. (недоступная ссылка) / Лебедев С. А. Философия науки: Словарь основных терминов. — М.: Академический Проект, 2004. — 320 с. (Серия «Gaudeamus»)
  6. (недоступная ссылка) / Философский энциклопедический словарь.- М.: Советская энциклопедия, 1989 г.
  7. Под редакцией А. А. Ивина. Вероятностная логика // Философия: Энциклопедический словарь. — М.: Гардарики . — 2004. / Новая философская энциклопедия: В 4 тт. М.: Мысль. Под редакцией В. С. Стёпина. 2001.
Источник —

Same as Вероятностная логика