Векторная графика
- 1 year ago
- 0
- 0
Ве́кторная величина́ — физическая величина , являющаяся вектором ( тензором ранга 1). Противопоставляется с одной стороны скалярным (тензорам ранга 0), с другой — тензорным величинам (строго говоря — тензорам ранга 2 и более). Также может противопоставляться тем или иным объектам совершенно другой математической природы.
Векторная величина обозначается буквой со стрелкой сверху (пример: ) или набирается жирным шрифтом (пример: ).
В большинстве случаев термин вектор употребляется в физике для обозначения вектора в так называемом «физическом пространстве», то есть в обычном трёхмерном пространстве классической физики или в четырёхмерном пространстве-времени в современной физике (в последнем случае понятие вектора и векторной величины совпадают с понятием 4-вектора и 4-векторной величины).
Употребление словосочетания «векторная величина» практически исчерпывается этим. Что же касается употребления термина «вектор», то оно, несмотря на тяготение по умолчанию к этому же полю применимости, в большом количестве случаев всё же весьма далеко выходит за такие рамки. Об этом см. ниже.
Несмотря на то, что понимание вектора с физической и математической сторон практически едино, в силу разной степени абстракции появляется терминологическая специфика.
Относительно физики в математике понятие вектора избыточно: любой вектор может иметь любую природу, бесчисленно абстрактное пространство и размерность. Когда требуется конкретика, необходимо либо длинно уточнять, либо учитывать явно описанный контекст, что зачастую приводит к путанице.
В физике же речь практически всегда идёт не о математических объектах (обладающих теми или иными формальными свойствами) вообще, а об их определённой, конкретной, «физической» привязке. Учитывая эти соображения конкретности с соображениями краткости и удобства, можно понять, что терминологическая практика в физике заметно отличается от математической. Однако она не входит с последней в явное противоречие. Этого удаётся достичь несколькими несложными способами. Прежде всего, это соглашение, заключающееся в наличии некоторого употребления термина по умолчанию — в неявном контексте. Так в физике, в отличие от математики, под словом вектор обычно понимается не «какой-то вектор любого линейного пространства вообще», а прежде всего вектор, который связан с «обычным физическим пространством» (трёхмерным пространством классической физики или четырёхмерным пространством-временем физики релятивистской). Для векторов же пространств, не связанных прямо и непосредственно с «физическим пространством» или «пространством-временем», как раз применяют специальные названия (иногда включающие слово «вектор», но с уточнением). Если вектор некоторого пространства, не связанного прямо и непосредственно с «физическим пространством» или «пространством-временем» (и которое трудно сразу как-то определённо охарактеризовать), вводится в теории, он часто специально описывается как «абстрактный вектор».
Всё сказанное ещё в большей степени, чем к термину «вектор», относится к термину «векторная величина». Умолчание в этом случае ещё более явно подразумевает привязку к «обычному пространству» или пространству-времени, а употребление по отношению к элементам абстрактных векторных пространств скорее практически не встречается (по крайней мере, оно является очень редким исключением).
В физике векторами чаще всего (а векторными величинами — практически всегда) называют векторы двух сходных между собою классов:
Примеры векторных физических величин: скорость , сила , плотность теплового потока , напряжённость электрического поля .
Каким образом физические «векторные величины» привязаны к пространству? Прежде всего, бросается в глаза то, что размерность векторных величин (в том обычном смысле употребления этого термина, который разъяснён выше) совпадает с размерностью одного и того же «физического» (и «геометрического») пространства, например, пространство трёхмерно и вектор электрического поля трехмерен. Интуитивно можно заметить также, что любая векторная физическая величина, какую бы туманную связь она не имела с обычной пространственной протяжённостью, тем не менее имеет вполне определённое направление именно в этом обычном пространстве.
Однако оказывается, что можно достичь и гораздо большего, прямо «сведя» весь набор векторных величин физики к простейшим «геометрическим» векторам, вернее даже — к одному вектору — вектору элементарного перемещения, а более правильно было бы сказать — произведя их всех от него.
Эта процедура имеет две различные (хотя по сути детально повторяющие друг друга) реализации для трёхмерного случая классической физики и для четырёхмерной пространственно-временной формулировки, обычной для современной физики.
Будем исходить из обычного трёхмерного «геометрического» пространства, в котором мы живём и можем перемещаться.
В качестве исходного и образцового вектора возьмём вектор бесконечно малого перемещения. Довольно очевидно, что это обычный «геометрический» вектор (как и вектор конечного перемещения).
Заметим теперь сразу, что умножение вектора на скаляр всегда даёт новый вектор. То же можно сказать о сумме и разности векторов. В этой главе мы не будем делать разницы между полярными и аксиальными векторами , поэтому заметим, что и векторное произведение двух векторов даёт новый вектор.
Также новый вектор даёт дифференцирование вектора по скаляру (поскольку такая производная есть предел отношения разности векторов к скаляру). Это можно сказать дальше и о производных всех высших порядков. То же верно по отношению к интегрированию по скалярам (времени, объёму).
Теперь заметим, что, исходя из радиус-вектора r или из элементарного перемещения d r , мы легко понимаем, что векторами являются (поскольку время — скаляр) такие кинематические величины, как
Из скорости и ускорения, умножением на скаляр (массу), появляются
Поскольку нас сейчас интересуют и псевдовекторы, заметим, что
Продолжая эту процедуру, мы обнаруживаем, что все известные нам векторные величины оказываются теперь не только интуитивно, но и формально, привязаны к исходному пространству. А именно все они в некотором смысле являются его элементами, так как выражаются в сущности как линейные комбинации других векторов (со скалярными множителями, возможно, и размерными, но скалярными, а поэтому формально вполне законными).
Ту же процедуру можно проделать исходя из четырёхмерного перемещения. Оказывается, что все 4-векторные величины «происходят» от 4-перемещения, являясь поэтому в некотором смысле такими же векторами пространства-времени, как и само 4-перемещение.