Interested Article - Эффективное число партий

Эффективное число партий ( англ. Effective number of parties , ENP , ENPP ), иногда индекс Лааксо — Таагепера , — концепт, использующийся в политической науке в сравнительных исследованиях электоральных и партийных систем для измерения уровня фрагментации партийной системы. Эффективное число политических партий отражает одновременно число партий в партийной системе, а также их относительный вес, причём оно может быть рассчитано как для результатов партий на выборах (иногда обозначается как ENEP или NV), так и для распределения мест в легислатуре ( ENPP , NS). Индекс был впервые введён в работе Маркку Лааксо и Рейном Таагепера 1979 года , а затем поддержан и применён в сравнительной политологии Арендом Лейпхартом .

Эффективное число партий в виде, предложенном Лааксо и Таагепера, признано конвенциональным и самым простым способом измерения числа политических партий в политии .

Расчёт эффективного числа

Эффективное число партий рассчитывается в соответствии с предложенной в статье Лааксо и Таагепера формулой:

где — эффективное число партий, — номинальное число партий, а — доля -той партии на выборах или в легислатуре. Значение индекса является числом, обратным вероятности того, что два случайно отобранных избирателя проголосуют за одну и ту же партию (или того, что два случайно отобранных места в парламенте будут заняты представителями одной партии) . Важно заметить, что если , то это означает, что партии на выборах или в легислатуре обладают почти одинаковой долей .

Для оценки фрагментации политической системы

Таким образом, данный показатель абсолютно аналогичен обратным индексу Херфиндаля (HHI) в экономике или индексу разнообразия Симпсона в экологии. Эти индексы могут быть обобщены как значения энтропии Реньи на уровне .

Пример эффективного числа партий в странах G7 в начале 2010-х
на выборах , в легислатуре
Графики временно недоступны из-за технических проблем.
Данные — : ° — на 2010, ¹ — на 2011, ² — на 2012, ³ — на 2013.

Предпосылки появления

В политической науке имеется консенсус о том, что номинальное число партий, участвующих в выборах или прошедших в легислатуру предоставляет исследователю слишком малые аналитические и прогностические возможности, поскольку не учитывает значимость тех или иных партий, их влияние на политику. Вместе с тем, существует несколько подходов к определению того, как считать политические партии . Блау (2008) сводил эту проблему к другому вопросу: какие партии следует признать значимыми (релевантными) . Дихотомический подход заключается в присвоении значимым партиям веса 1, а незначимым — 0. Дж. Сартори в многочисленных исследованиях и в построении собственной классификации партийных систем настаивал на сочетании дихотомического подсчёта с качественной оценкой коалиционного и компрометирующего потенциала партий. К недостаткам подобного подхода необходимо отнести следующие черты:

  • Категоричность оценки: партия либо релевантна, либо нерелевантна.
  • Сложности с оценкой комрометирующего потенциала партии: многие каналы взаимного воздействия партий являются скрытыми.
  • Невзвешенность оценки партий: присваивать всем релевантным партиям одинаковую релевантность некорректно .

Последняя проблема отчасти решалась в исследованиях посредством использования концепта «полупартий» ( half parties ), начиная с Блонделя (1968): двухпартийные системы отделялись от многопартийных при сравнении суммарной доли двух лидирующих партий, а ситуации, когда подавляющее большинство мест в легислатуре делили между собой две крупные партии, а также одна менее крупная, характеризовались как «двух с половиной партийная система» ( two-and-a-half-party system ) .

Критика индекса

Несмотря на появления ряда альтернативных методик подсчёта, подход к расчёту эффективного числа, предложенный Лааксо и Таагепера, по сей день остаётся конвенциональным и пользуется консенсусом в научном сообществе . Основным достоинством индекса Лааксо-Таагепера, как правило, называют его интуитивную простоту. Шкала, к которой относятся значения индекса, не является отвлечённой и напрямую означает число релевантных партий в партийной системе, а не некоторую степень фрагментации в целом. По свидетельству Таагепера и Шугарта (1989), «можно попросить неосведомлённых студентов оценить эффективное число партий, и их ответы будут приблизительно соответствовать ENP» . Кроме того, эффективное число является взвешенной оценкой, где весом каждой партии является её доля в легислатуре или на выборах, разрешая проблему, стоявшую перед исследователями, стремившимися оценить вес партий в соответствии с качественными критериями. Впрочем, равный вес партии на выборах далеко не гарантирует её реального политического веса и долгосрочной возможности поддерживать определённый уровень электорального успеха .

Несмотря на интуитивную простоту и хорошие аналитические возможности, которые предлагает эффективное число Лааксо-Таагепера, у него есть ряд недостатков. Эффективное число Лааксо-Таагепера имеет тенденцию к переоценке веса крупнейшей партии и недооценке мелких партий. Так, вклад крупнейшей партии в значении индекса может превышать 1. Как следствие, эффективное число партий в однопартийной и двухпартийной системах, как правило, совпадают, так как крупнейшая партия занимает большую долю в значении индекса, которая может превышать 1. Например, эффективные числа в системах с распределением партийных долей (0,7; 0,05; 0,05; 0,05; 0,05; 0,05; 0,05) и (0,51; 0,49) составляет 1,99 и 2 соответственно . Недооценка малых партий может искажать представление о партийной системе, так как эффективное число партий будет фактически нивелировать долю набравших относительно немного голосов, но всё равно влиятельных и конкурентоспособных партий (пример: Свободная демократическая партия Германии на протяжении почти всего послевоенного периода) .

Кроме того, в ходе качественной интерпретации показателя, например, в целях классификации партийных систем , возникает вопрос, насколько условна граница между различными типами систем, проведённая в соответствии с индексом: в чём принципиальная разница между партийными системами с и , которые при классификации могут быть отнесены к разным категориям (однопартийная и двухпартийная системы соответственно)? Одним из выходов из этой проблемы является следование выше обозначенной логики полупартий, особенно в системах, где , которые могут быть концептуализированы, как «двух с половиной партийные» . В целом, Сиарофф (2003) предложил отойти от использования ENP для классификации партийных систем, применяя для этого другие показатели — ( ), превышение первой победившей партией над второй ( ) и суммарную долю двух ведущих партий . Более того, некоторые авторы выносили суждения об эффективности той или иной партийной модели, в том числе в вопросах формирования правительства и контроля за его деятельностью — в таких случаях применимость ENP в качестве объясняющей переменной весьма ограничена, поскольку индекс не содержит информации о взаимосвязи парламентских выборов и формирования исполнительных органов .

Усовершенствование индекса

Индекс Молинара

Сравнение индексов
Лааксо-Таагепера и Молинара
конвенциональный тип
партийной системы
0,7;
6 партий по 0,05
1,99 1,06 с предоминантной партией
0,51; 0,49 2,00 1,96 двухпартийная

Хуан Молинар (1991) предложил улучшить конвенциональное эффективное число , чтобы избежать ошибки, связанные с переоценкой значимости крупнейшей партии:

где — доля крупнейшей партии.

Индекс, описанный Молинаром, заведомо присваивает крупнейшей партии значение 1 (невзирая на тот факт, была ли правящая коалиция сформирована с её участием или нет) и отдельно учитывает вероятность того, что два случайно выбранных избирателя проголосуют за одну и ту же партию, которая не обладает крупнейшей долей . Помимо прочего, индекс не переоценивает значение разрыва между первой и второй партией по электоральному результату, не преувеличивая тем самым конечное число эффективных партий, а также обладает меньшей дисперсией, чем индекс Лааксо-Таагепера или Кессельмана-Вильдгена .

конвенциональный тип
партийной системы
0,5; 0,5 2,00 2,00 двухпартийная
0,5; 0,25; 0,25 2,67 1,89 многопартийная
(двух с половиной партийная)

Тем не менее, индекс Молинара не стал общепризнанным и повсеместно применяемым. Данливи и Бусе указывают на возможные на то причины: сложности при подсчёте и отсутствие интуитивной ясности того, как индекс отражает состояние партийной системы . Лейпхарт указывал на неадекватное отражение перехода партийной системы от распределения долей (0,5; 0,5) к распределению (0,5; 0,25; 0,25), как не соответствующего интуитивным представлениям и исследовательским ожиданиям от такого перехода .

Дополнительный индекс Таагепера

В ответ на критику оригинального индекса для случаев, когда , Таагепера (1999) предложил для оценки фрагментации партийной системы использовать и эффективное число , и введённый им в его работе индекс , определяющийся следующим образом:

Параллельное использование и позволяет комплексно оценивать партийную систему: по уровню фрагментации и по наличию в системе доминирующей партии (абсолютное большинство голосов соответствует .

Статистическая интерпретация

Доли политических партий могут быть представлены в качестве статистической выборки, обладающей всеми соответствующими характеристиками :

  • выборочным средним :
  • выборочной дисперсией : , откуда следует, что

Так, эффективное число партий по Лааксо и Таагапера может быть рассчитано следующим образом:

Подобная интерпретация позволяет рассчитывать эффективное число при помощи двух простых и хорошо известных выборочных статистик . Кроме того, в 2011 Жан-Франсуа Колье заметил, что доля характеризует не только относительный результат партии на выборах, но и вероятность того, что случайно выбранный избиратель проголосовал за эту партию (или депутат избрался от неё). В общем виде число характеризует ожидаемую долю партии, к которой относится место в легислатуре или за которую проголосовал избиратель, выбранные случайным образом :

Стандартизированное эффективное число

Статистическая интерпретация выявляет слабое место эффективного числа Лааксо-Таагепера — чувствительность дисперсии к изменению единиц измерения (то есть умножению всех элементов выборки на одно и то же число), а также искажение показателя в зависимости от размера выборки. Колье изложил стандартизированное эффективное число в следующем виде :

Аксиоматика индекса

Колье также произвёл аксиоматизацию конвенционального эффективного числа партий, предполагая, что последнее является числовой функцией :

где — абсолютное число голосов, поданных за партию, или мест, занимаемых ею в парламенте.

В результате были выведены аксиомы, которым среди других мер концентрации (или фрагментации) долей соответствуют лишь индекс Лааксо-Таагепера. Таким образом, они могут быть сформулированы в качестве свойств :

  1. Однородность степени 0: .
  2. Относительность индекса: .
  3. Рефлексивность : для .
  4. Рекурсивность: .


Использование в сравнительной политике

Изучение электоральных систем

Одно из направлений в изучении партийных и электоральных систем с использованием эффективного числа партий основано на сравнении значений этого показателя, рассчитанного для результатов голосования и распределения мест в легислатуре. Подобное сравнение позволяет изучить закономерности взаимного влияния электоральных и партийных систем.

В литературе не сложилось единого мнения по поводу того, какая из разновидностей эффективного числа наиболее адекватно отражает реалии партийной системы, господствующей в стране. Консенсус, скорее, состоит в том, чтобы варьировать использование индексов (для выборов) и (для легислатур) в зависимости от контекста и исследовательских задач. Данливи (1999) настаивал на использовании электорального эффективного числа, поскольку в мажоритарных избирательных системах в распределение мест в легислатуре закладывается сильное искажение реальной поддержки политических сил в стране. Характерный пример — Великобритания, где распределение поддержки партий на национальном уровне зачастую не соответствует распределению мест в парламенте . Сравнение и позволяет сравнивать электоральные системы и оценивать то, насколько они отражают предпочтения избирателей. Так, пропорциональная система без электоральных барьеров должна приводить к равенству распределений партий на выборах и в легислатуре, то есть . Таагепера и Шугарт (1989) предложили следующие критерии для тестирования пропорциональности избирательной системы:

  • Отсутствие абсолютной редукции ( absolute reduction ): .
  • Отсутствие относительной редукции ( relative reduction ): .

При условии абсолютной пропорциональности избирательной системы, данные критерии являются равносильными . При этом, сравнение двух разновидностей индекса предоставляет более скромные аналитические возможности в случае мажоритарной системы. Во-первых, и могут быть весьма близки к выполнению критериев Таагепера и Шугарта — ближе, чем некоторые пропорциональные системы с высокими избирательными барьерами или низкими порогами для участия в выборах . Во-вторых, критерии не чувствительны к образованию « » между несколькими небольшими партиями, стремящимися преуспеть в условиях мажоритарной системы. Кроме того, в классическом виде эффективное число не способно обнаружить различия в мотивации партий при формировании правительства: в пропорциональной системе это попадание в правящую коалицию, в мажоритарной — формирование собственного однопартийного правительства .

Отмечалось, что эффективное число в легислатуре может послужить средством для изучения взаимодействия парламентов и президента. Имеются исследования, связывающие стабильность президентских республик в Латинской Америке с уровнем фрагментации политических сил, представленных в парламенте .

Классификация партийных систем

В политической науке принято конвенциональным следующее сопоставление эффективного числа в легислатуре и партийных систем :

Более того, Эдриан Блау в 2008 предложил расширить логику индекса Лааксо-Таагепера и предложил концепт эффективного числа партий по их законодательной силе (legislative power) и по их влиянию на кабинет :

где и — доля влияния -той партии на законодательный процесс и исполнительную власть соответственно .


Примечания

  1. .
  2. , pp. 68—70.
  3. , p. 5.
  4. , pp. 168—169.
  5. , pp. 184—185.
  6. , p. 2.
  7. , p. 80.
  8. , p. 170.
  9. , p. 1384.
  10. , pp. 268—269.
  11. , pp. 271—272.
  12. , p. 171.
  13. , p. 1385.
  14. , pp. 1384—1385.
  15. , pp. 1386—1387.
  16. , p. 309.
  17. , pp. 69—70.
  18. .
  19. , pp. 101—106.
  20. , p. 3.
  21. , pp. 3—4.
  22. , pp. 9—10.
  23. , pp. 11—14.
  24. , pp. 214—215.
  25. , pp. 174—175.
  26. , pp. 270—273.
  27. , pp. 172—174.

Комментарии

  1. См. раздел .
  2. В ( , pp. 271—272) изложена следующая логика классификации партийных систем без применения ENP:
    • Система с предоминантной партией (однопартийная): и .
    • Двухпартийная система: , причём обе партии имеют реальную возможность одержать абсолютную победу.
      • Двух с половиной партийная система: и несоответствие критериям однопартийной системы.
    • Многопартийная система: и несоответствие критериям однопартийной системы.
  3. Ср. США, где в 2012 , и ФРГ, где в 2013 , . ( )
  4. См., например, Jones M.P. Electoral Laws and the Survival of Presidential Democracies. — Notre Dame: University of Notre Dame Press, 1995.

Литература

  • Blau A. The effective number of parties at four scales: Votes, seats, legislative power and cabinet power // Party Politics. — 2008. — № 14(2) . — P. 167–187. — doi : .
  • Blondel J. Party Systems and Patterns of Government in Western Democracies // Canadian Journal of Political Science. — 1968. — Vol. 1, № 2 . — P. 180–203.
  • Caulier J.-F. // Documents de travail du Centre d'Economie de la Sorbonne 2011.06. — 2011.
  • Dunleavy P. Neither the T Index nor the D2 Score Measure "Two-Partyness": A Comment on Gaines and Taagepera // Journal of Elections, Public Opinion and Parties. — 2014. — № 24 (3) . — С. 362—385 . — doi : .
  • Dunleavy P. Electoral Representation and Accountability: the Legacy of Empire // Fundamentals in British Politics. — New York: St Martin’s Press, 1999. — P. 204–230.
  • Dunleavy P., Boucek F. Constructing the Number of Parties // Party Politics. — 2003. — Vol. 9, № 3 . — P. 291—315. — doi : .
  • Feld S.L., Grofman B. The Laakso-Taagepera Index in a Mean and Variance Framework // Journal of Theoretical Politics. — 2007. — Vol. 19, № 1 . — P. 101—106.
  • Gallacher M. . — Trinity College Dublin, 2015.
  • Gaines B.J., Taagepera R. How to Operationalize Two-Partyness // Journal of Elections, Public Opinion and Parties. — 2013. — № 23 (4) . — С. 387—404 . — doi : .
  • Golosov G. V. The Effective Number of Parties: A New Approach // Party Politics. — 2010. — № 16 . — P. 171—192.
  • Grofman B., Kline R. How many political parties are there, really? A new measure of the ideologically cognizable number of parties/party groupings // Party Politics. — 2012. — Vol. 18, № 4 . — P. 523—544. — doi : .
  • Laakso M., Taagepera R. “Effective” Number of Parties: A Measure with Application to West Europe // Comparative Political Studies. — 1979. — № 12 (1) . — P. 3—27.
  • Lijphart A. . — Oxford: Oxford University Press, 1994. — 228 p. — ISBN 9780198273479 .
  • Molinar J. // The American Political Science Review. — 1991. — Vol. 85, № 4 . — P. 1383—1391. — doi : .
  • Siaroff A. Two-and-a-Half-Party Systems and the Comparative Role of the 'Half' // Party Politics. — 2003. — Vol. 9, № 3 . — P. 267—290. — doi : .
  • Taagepera R. // Electoral Studies. — 1997. — Vol. 16, № 2 . — P. 145—151.
  • Taagepera R. // Electoral Studies. — 1999. — Vol. 18, № 4 . — P. 497–504. — doi : .
  • Taagepera R., Grofman B. Effective Size and Number of Components // Sociological Methods & Research. — 1981. — № 10 (1) . — P. 63—81. — doi : .
  • Taagepera R., Shugart M.S. Seats and Votes: The Effects and Determinants of Electoral Systems. — New Haven: Yale University Press, 1989.
Источник —

Same as Эффективное число партий