Interested Article - Закон Гутенберга — Рихтера

Закон Гутенберга — Рихтера в сейсмологии описывает зависимость между магнитудой и общим числом землетрясений для любого заданного региона и промежутка времени:

или

где — число событий с магнитудой , а и — константы.

Данная зависимость была впервые предложена Чарльзом Рихтером и Бено Гутенбергом , являясь удивительным образом устойчивой как в пространстве, так и во времени.

Константа b обычно равняется 1.0 для сейсмически активных регионов. Это означает, что для каждого события с магнитудой 4.0 обычно приходится 10 землетрясений с магнитудой 3.0 и 100 — с магнитудой 2.0. В зависимости от тектонической структуры региона, b-значение может варьироваться от 0.5 до 1.5. Заметным исключением являются события типа «рой землетрясений», для которых b-значение может превышать 2.5, что означает большую пропорцию малых землетрясений по отношению к крупным.

О некоторых пространственных и временных вариациях b-значений единого мнения не сложилось. Наиболее частые факторы, которыми пытаются объяснить подобные вариации:

  • напряжение земных пород ;
  • глубина, ;
  • фокальный механизм, ;
  • гетерогенность прочности пород, .

Имеет место тенденция уменьшения b-значения при землетрясениях с небольшой магнитудой. Данный эффект известен как «roll-off»-эффект b-значений, выражающийся в том, что линия на графике логарифмической записи закона становится площе по мере уменьшения магнитуды. Ранее это объяснялось простой неполнотой данных, так как, в идеале, все события должны вписываться в зависимость и лежать на одной прямой. Предполагалось, что множество мелких землетрясений просто не зарегистрированы и отсутствуют в выборке в силу того, что слишком мало станций может определить и зафиксировать их. Тем не менее, некоторые современные модели динамики землетрясений уже изначально описывают данный эффект.

Меньший научный интерес представляет a-значение , выражающее сейсмичность региона, что особенно заметно, если выразить закон через общее число событий:

где — общее число событий.

Источники

  1. Gutenberg B., Richter C.F. Frequency of Earthquakes in California // Bulletin of the Seismological Society of America. 1944. Vol. 34. P. 185-188.
  2. Bhattacharya et al , p.120
  3. Scholz, C. H. (1968), the frequency-magnitude relation of microfracturing in rock and its relation to earthquakes, BSSA, 58(1), 399—415.
  4. Mori, J., et R. E. Abercombie (1997), Depth dependence of earthquake frequency-magnitude distributions in California: Implication for rupture initiation, Journal of Geophysical Research, 102(B7), 15081-15090.
  5. Schorlemmer, D., S. Wiemer, et M. Wyss (2005), Variations in earthquake-size distribution across different stress regimes, Nature, 437, 539—542, doi: 10.1038/nature04094.
  6. Mogi, K. (1962), Magnitude frequency relations for elastic shocks accompanying fractures of various materials and some related problems in earthquakes, Bull. Earthquake Res. Inst. Univ. Tokyo, 40, 831—853.
  7. Bhattacharya et al , p.119-121
    Pelletier, pp.34-36

Литература

  • Pathikrit Bhattacharya, , Kamal, and Debashis Samanta, «Fractal models of earthquake dynamics», Heinz Georg Schuster (ed), Reviews of Nonlinear Dynamics and Complexity , pp. 107–150 V.2 , Wiley-VCH, 2009 ISBN 3-527-40850-9 .
  • B. Gutenberg and C.F. Richter, Seismicity of the Earth and Associated Phenomena , 2nd ed. (Princeton, N.J.: Princeton University Press, 1954).
  • Jon D. Pelletier, «Spring-block models of seismicity: review and analysis of a structurally heterogeneous model coupled to the viscous asthenosphere» Geocomplexity and the Physics of Earthquakes , American Geophysical Union, 2000 ISBN 0-87590-978-7 .
Источник —

Same as Закон Гутенберга — Рихтера