Показатель преломления
- 1 year ago
- 0
- 0
Показатель адиабаты (иногда называемый коэффициентом Пуассона ) — отношение теплоёмкости при постоянном давлении ( ) к теплоёмкости при постоянном объёме ( ). Иногда его ещё называют фактором изоэнтропийного расширения . Обозначается греческой буквой ( гамма ) или ( каппа ). Буквенный символ в основном используется в химических инженерных дисциплинах. В теплотехнике используется латинская буква .
Уравнение:
где
Для показателя адиабаты справедлива теорема Реша (1854) :
где и — изотермический и адиабатический (изоэнтропический) коэффициенты всестороннего сжатия .
Для понимания этого соотношения можно рассмотреть следующий эксперимент. Закрытый цилиндр с закреплённым неподвижно поршнем содержит воздух. Давление внутри равно давлению снаружи. Этот цилиндр нагревается до определённой, требуемой температуры. До тех пор, пока поршень закреплён в неподвижном состоянии, объём воздуха в цилиндре остаётся неизменным, в то время как температура и давление возрастают. Когда требуемая температура будет достигнута, нагревание прекращается. В этот момент поршень «освобождается» и, благодаря этому, начинает перемещаться под давлением воздуха в цилиндре без теплообмена с окружающей средой (воздух расширяется адиабатически ). Совершая работу , воздух внутри цилиндра охлаждается ниже достигнутой ранее температуры. Чтобы вернуть воздух к состоянию, когда его температура опять достигнет упомянутого выше требуемого значения (при всё ещё «освобождённом» поршне) воздух необходимо нагреть. Для этого нагревания извне необходимо подвести примерно на 40 % (для двухатомного газа — воздуха) большее количество теплоты, чем было подведено при предыдущем нагревании (с закреплённым поршнем). В этом примере количество теплоты, подведённое к цилиндру при закреплённом поршне, пропорционально , тогда как общее количество подведённой теплоты пропорционально . Таким образом, показатель адиабаты в этом примере равен 1,4.
Другой путь для понимания разницы между и состоит в том, что применяется тогда, когда работа совершается над системой, которую принуждают к изменению своего объёма (то есть путём движения поршня, который сжимает содержимое цилиндра), или если работа совершается системой с изменением её температуры (то есть нагреванием газа в цилиндре, что вынуждает поршень двигаться). применяется только если — а это выражение обозначает совершённую газом работу — равно нулю. Рассмотрим разницу между подведением тепла при закреплённом поршне и подведением тепла при освобождённом поршне. Во втором случае давление газа в цилиндре остаётся постоянным, и газ будет как расширяться, совершая работу над атмосферой, так и увеличивать свою внутреннюю энергию (с увеличением температуры); теплота, которая подводится извне, лишь частично идёт на изменение внутренней энергии газа, в то время как остальное тепло идёт на совершение газом работы.
показатели адиабаты для различных температур и газов | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
темп. | газ | темп. | газ | темп. | газ | |||||
20 °C | He | 1,660 | 20 °C | NO | 1,400 | 20 °C | H 2 O | 1,330 | ||
19 °C | Ne | 1,640 | −181 °C | O 2 | 1,450 | 100 °C | 1,324 | |||
−180 °C | Ar | 1,760 | −76 °C | 1,415 | 200 °C | 1,310 | ||||
20 °C | 1,670 | 20 °C | 1,400 | 0 °C |
сухой
воздух |
1,403 | ||||
19 °C | Kr | 1,680 | 100 °C | 1,399 | 20 °C | 1,400 | ||||
19 °C | Xe | 1,660 | 200 °C | 1,397 | 100 °C | 1,401 | ||||
360 °C | Hg | 1,670 | 400 °C | 1,394 | 200 °C | 1,398 | ||||
−181 °C | H 2 | 1,597 | 20 °C | CO | 1,400 | 400 °C | 1,393 | |||
−76 °C | 1,453 | 20 °C | Cl 2 | 1,340 | 1000 °C | 1,365 | ||||
20 °C | 1,410 | 0 °C | CO 2 | 1,310 | 2000 °C | 1,088 | ||||
100 °C | 1,404 | 20 °C | 1,300 | 15 °C | SO 2 | 1,290 | ||||
400 °C | 1,387 | 100 °C | 1,281 | −115 °C | CH 4 | 1,410 | ||||
1000 °C | 1,358 | 400 °C | 1,235 | −74 °C | 1,350 | |||||
2000 °C | 1,318 | 1000 °C | 1,195 | 20 °C | 1,320 | |||||
−181 °C | N 2 | 1,470 | 15 °C | NH 3 | 1,310 | 15 °C | C 2 H 6 | 1,220 | ||
15 °C | 1,404 | 20 °C | N 2 O | 1,310 | 16 °C | C 3 H 8 | 1,130 |
Для идеального газа теплоёмкость не зависит от температуры. Соответственно, можно выразить энтальпию как и внутренняя энергия может быть представлена как . Таким образом, можно также сказать, что показатель адиабаты — это отношение энтальпии к внутренней энергии:
С другой стороны, теплоёмкости могут быть выражены также через показатель адиабаты ( ) и универсальную газовую постоянную ( ):
Может оказаться достаточно трудным найти информацию о табличных значениях , в то время как табличные значения приводятся чаще. В этом случае можно использовать следующую формулу для определения :
где — количество вещества в молях. Для молярных теплоёмкостей, соответственно,
Показатель адиабаты ( ) для идеального газа может быть выражен через количество степеней свободы ( ) молекул газа:
Таким образом, для одноатомного идеального газа (три степени свободы) показатель адиабаты равен:
в то время как для двуатомного идеального газа (пять степеней свободы) (при комнатной температуре):
Для многоатомного идеального газа (шесть степеней свободы) показатель адиабаты равен:
Воздух на земле представляет собой в основном смесь двухатомных газов (около 78 % азота — N 2 , и около 21 % кислорода — O 2 ), и при нормальных условиях его можно рассматривать как идеальный. Двухатомный газ имеет пять степеней свободы (три поступательных и две вращательных степени свободы; колебательная степень свободы не задействована, за исключением высоких температур). Как следствие, теоретически, показатель адиабаты для воздуха имеет величину:
Это хорошо согласуется с экспериментальными измерениями показателя адиабаты воздуха, которые приблизительно дают значение 1,403 (приведённое выше в таблице).
По мере того, как температура возрастает, более высокоэнергетические вращательные и колебательные состояния становятся достижимыми для молекулярных газов, и таким образом, количество степеней свободы возрастает, и уменьшается показатель адиабаты .
Для реальных газов, как , так и возрастают с увеличением температуры, при этом разность между ними остаётся неизменной (согласно приведённой выше формуле = ), и эта разность отражает постоянство величины , то есть работы, совершаемой при расширении. Величина представляет собой разницу между количествами подведённой теплоты при постоянном давлении и при постоянном объёме. Следовательно, отношение двух величин, , возрастает при увеличении температуры. См. также удельная теплоёмкость .
Значения, полученные с помощью приближённых соотношений (в частности, ), во многих случаях являются недостаточно точными для практических инженерных расчётов, таких, как расчёты расходов через трубопроводы и клапаны. Предпочтительнее использовать экспериментальные значения, чем те, которые получены с помощью приближённых формул. Строгие значения соотношения может быть вычислено путём определения из свойств, выраженных как:
Значения не составляет труда измерить, в то время как значения для необходимо определять из формул, подобных этой. для получения более подробной информации о соотношениях между теплоёмкостями.
Вышеприведённые соотношения отражают подход, основанный на развитии строгих уравнений состояния (таких, как ), которые настолько хорошо согласуются с экспериментом, что для их применения требуется лишь незначительно развивать базу данных соотношений или значений . Значения могут быть также определены с помощью метода конечных разностей .
Для изоэнтропийного, квазистатического , обратимого адиабатного процесса, происходящего в простом сжимаемом идеальном газе :
где — это давление и — объём газа.
Поскольку процессы, происходящие в небольших объёмах газа при прохождении звуковой волны, близки к адиабатическим , показатель адиабаты можно определить, измерив скорость звука в газе. В этом случае показатель адиабаты и скорость звука в газе будут связаны следующим выражением:
где — показатель адиабаты; — постоянная Больцмана ; — универсальная газовая постоянная ; — абсолютная температура в кельвинах ; — молекулярная масса ; — молярная масса .
Другим способом экспериментального определения величины показателя адиабаты является , который часто используется в учебных целях при выполнении лабораторных работ. Метод основан на изучении параметров некоторой массы газа, переходящей из одного состояния в другое двумя последовательными процессами: адиабатическим и изохорическим.
Лабораторная установка включает стеклянный баллон, соединённый с манометром , краном и резиновой грушей. Груша служит для нагнетания воздуха в баллон. Специальный зажим предотвращает утечку воздуха из баллона. Манометр измеряет разность давлений внутри и вне баллона. Кран может выпускать воздух из баллона в атмосферу.
Пусть первоначально в баллоне было атмосферное давление и комнатная температура. Процесс выполнения работы можно условно разбить на два этапа, каждый из которых включает в себя адиабатный и изохорный процесс.
1-й этап:
При закрытом кране накачиваем в баллон небольшое количество воздуха и зажимаем шланг зажимом. При этом давление и температура в баллоне повысятся. Это
адиабатический процесс
. Со временем давление в баллоне начнёт уменьшаться вследствие того, что газ в баллоне начнёт охлаждаться за счёт теплообмена через стенки баллона. При этом давление будет уменьшаться при постоянном объёме. Это изохорный процесс. Выждав, когда температура воздуха внутри баллона сравняется с температурой окружающего воздуха, запишем показания манометра
.
2-й этап:
Теперь откроем кран 3 на 1—2 секунды. Воздух в баллоне будет адиабатно расширяться до атмосферного давления. При этом температура в баллоне понизится. Затем кран закроем. Со временем давление в баллоне начнёт увеличиваться вследствие того, что газ в баллоне начнёт нагреваться за счёт теплообмена через стенки баллона. При этом снова будет увеличиваться давление при постоянном объёме. Это изохорный процесс. Выждав, когда температура воздуха внутри баллона сравнится с температурой окружающего воздуха, запишем показание манометра
. Для каждой ветви 2-х этапов можно написать соответствующие уравнения адиабаты и изохоры. Получится система уравнений, которые включают в себя показатель адиабаты. Их приближённое решение приводит к следующей расчётной формуле для искомой величины:
Недостатком данного метода является то, что процессы быстрого расширения газа в ходе лабораторной работы не являются чисто адиабатическими ввиду теплообмена через стенку сосудов, а рассматриваемый газ заведомо не является идеальным. И хотя полученная в ходе лабораторной работы величина будет заведомо содержать методическую погрешность, всё же существуют различные способы её устранения, например, за счёт учёта времени расширения и количества подведенного за это время тепла.