Interested Article - Показатель адиабаты

Статья является частью одноименной серии.
Термодинамика
См. также «Физический портал»

Показатель адиабаты (иногда называемый коэффициентом Пуассона ) — отношение теплоёмкости при постоянном давлении ( ) к теплоёмкости при постоянном объёме ( ). Иногда его ещё называют фактором изоэнтропийного расширения . Обозначается греческой буквой ( гамма ) или ( каппа ). Буквенный символ в основном используется в химических инженерных дисциплинах. В теплотехнике используется латинская буква .

Уравнение:

где

теплоёмкость газа,
удельная теплоёмкость (отношение теплоёмкости к единице массы) газа,
индексы и обозначают условие постоянства давления или постоянства объёма, соответственно.

Для показателя адиабаты справедлива теорема Реша (1854) :

где и — изотермический и адиабатический (изоэнтропический) коэффициенты всестороннего сжатия .

Для понимания этого соотношения можно рассмотреть следующий эксперимент. Закрытый цилиндр с закреплённым неподвижно поршнем содержит воздух. Давление внутри равно давлению снаружи. Этот цилиндр нагревается до определённой, требуемой температуры. До тех пор, пока поршень закреплён в неподвижном состоянии, объём воздуха в цилиндре остаётся неизменным, в то время как температура и давление возрастают. Когда требуемая температура будет достигнута, нагревание прекращается. В этот момент поршень «освобождается» и, благодаря этому, начинает перемещаться под давлением воздуха в цилиндре без теплообмена с окружающей средой (воздух расширяется адиабатически ). Совершая работу , воздух внутри цилиндра охлаждается ниже достигнутой ранее температуры. Чтобы вернуть воздух к состоянию, когда его температура опять достигнет упомянутого выше требуемого значения (при всё ещё «освобождённом» поршне) воздух необходимо нагреть. Для этого нагревания извне необходимо подвести примерно на 40 % (для двухатомного газа — воздуха) большее количество теплоты, чем было подведено при предыдущем нагревании (с закреплённым поршнем). В этом примере количество теплоты, подведённое к цилиндру при закреплённом поршне, пропорционально , тогда как общее количество подведённой теплоты пропорционально . Таким образом, показатель адиабаты в этом примере равен 1,4.

Другой путь для понимания разницы между и состоит в том, что применяется тогда, когда работа совершается над системой, которую принуждают к изменению своего объёма (то есть путём движения поршня, который сжимает содержимое цилиндра), или если работа совершается системой с изменением её температуры (то есть нагреванием газа в цилиндре, что вынуждает поршень двигаться). применяется только если — а это выражение обозначает совершённую газом работу — равно нулю. Рассмотрим разницу между подведением тепла при закреплённом поршне и подведением тепла при освобождённом поршне. Во втором случае давление газа в цилиндре остаётся постоянным, и газ будет как расширяться, совершая работу над атмосферой, так и увеличивать свою внутреннюю энергию (с увеличением температуры); теплота, которая подводится извне, лишь частично идёт на изменение внутренней энергии газа, в то время как остальное тепло идёт на совершение газом работы.

показатели адиабаты для различных температур и газов
темп. газ темп. газ темп. газ
20 °C He 1,660 20 °C NO 1,400 20 °C H 2 O 1,330
19 °C Ne 1,640 −181 °C O 2 1,450 100 °C 1,324
−180 °C Ar 1,760 −76 °C 1,415 200 °C 1,310
20 °C 1,670 20 °C 1,400 0 °C сухой
воздух
1,403
19 °C Kr 1,680 100 °C 1,399 20 °C 1,400
19 °C Xe 1,660 200 °C 1,397 100 °C 1,401
360 °C Hg 1,670 400 °C 1,394 200 °C 1,398
−181 °C H 2 1,597 20 °C CO 1,400 400 °C 1,393
−76 °C 1,453 20 °C Cl 2 1,340 1000 °C 1,365
20 °C 1,410 0 °C CO 2 1,310 2000 °C 1,088
100 °C 1,404 20 °C 1,300 15 °C SO 2 1,290
400 °C 1,387 100 °C 1,281 −115 °C CH 4 1,410
1000 °C 1,358 400 °C 1,235 −74 °C 1,350
2000 °C 1,318 1000 °C 1,195 20 °C 1,320
−181 °C N 2 1,470 15 °C NH 3 1,310 15 °C C 2 H 6 1,220
15 °C 1,404 20 °C N 2 O 1,310 16 °C C 3 H 8 1,130

Соотношения для идеального газа

Для идеального газа теплоёмкость не зависит от температуры. Соответственно, можно выразить энтальпию как и внутренняя энергия может быть представлена как . Таким образом, можно также сказать, что показатель адиабаты — это отношение энтальпии к внутренней энергии:

С другой стороны, теплоёмкости могут быть выражены также через показатель адиабаты ( ) и универсальную газовую постоянную ( ):

и

Может оказаться достаточно трудным найти информацию о табличных значениях , в то время как табличные значения приводятся чаще. В этом случае можно использовать следующую формулу для определения :

где количество вещества в молях. Для молярных теплоёмкостей, соответственно,

Соотношения с использованием количества степеней свободы

Показатель адиабаты ( ) для идеального газа может быть выражен через количество степеней свободы ( ) молекул газа:

или

Таким образом, для одноатомного идеального газа (три степени свободы) показатель адиабаты равен:

в то время как для двуатомного идеального газа (пять степеней свободы) (при комнатной температуре):

Для многоатомного идеального газа (шесть степеней свободы) показатель адиабаты равен:

Воздух на земле представляет собой в основном смесь двухатомных газов (около 78 % азота — N 2 , и около 21 % кислорода — O 2 ), и при нормальных условиях его можно рассматривать как идеальный. Двухатомный газ имеет пять степеней свободы (три поступательных и две вращательных степени свободы; колебательная степень свободы не задействована, за исключением высоких температур). Как следствие, теоретически, показатель адиабаты для воздуха имеет величину:

Это хорошо согласуется с экспериментальными измерениями показателя адиабаты воздуха, которые приблизительно дают значение 1,403 (приведённое выше в таблице).

Соотношения для реальных газов

По мере того, как температура возрастает, более высокоэнергетические вращательные и колебательные состояния становятся достижимыми для молекулярных газов, и таким образом, количество степеней свободы возрастает, и уменьшается показатель адиабаты .

Для реальных газов, как , так и возрастают с увеличением температуры, при этом разность между ними остаётся неизменной (согласно приведённой выше формуле = ), и эта разность отражает постоянство величины , то есть работы, совершаемой при расширении. Величина представляет собой разницу между количествами подведённой теплоты при постоянном давлении и при постоянном объёме. Следовательно, отношение двух величин, , возрастает при увеличении температуры. См. также удельная теплоёмкость .

Термодинамические выражения

Значения, полученные с помощью приближённых соотношений (в частности, ), во многих случаях являются недостаточно точными для практических инженерных расчётов, таких, как расчёты расходов через трубопроводы и клапаны. Предпочтительнее использовать экспериментальные значения, чем те, которые получены с помощью приближённых формул. Строгие значения соотношения может быть вычислено путём определения из свойств, выраженных как:

Значения не составляет труда измерить, в то время как значения для необходимо определять из формул, подобных этой. для получения более подробной информации о соотношениях между теплоёмкостями.

Вышеприведённые соотношения отражают подход, основанный на развитии строгих уравнений состояния (таких, как ), которые настолько хорошо согласуются с экспериментом, что для их применения требуется лишь незначительно развивать базу данных соотношений или значений . Значения могут быть также определены с помощью метода конечных разностей .

Адиабатический процесс

Для изоэнтропийного, квазистатического , обратимого адиабатного процесса, происходящего в простом сжимаемом идеальном газе :

где — это давление и — объём газа.

Экспериментальное определение величины показателя адиабаты

Поскольку процессы, происходящие в небольших объёмах газа при прохождении звуковой волны, близки к адиабатическим , показатель адиабаты можно определить, измерив скорость звука в газе. В этом случае показатель адиабаты и скорость звука в газе будут связаны следующим выражением:

где — показатель адиабаты; постоянная Больцмана ; универсальная газовая постоянная ; абсолютная температура в кельвинах ; молекулярная масса ; молярная масса .

Другим способом экспериментального определения величины показателя адиабаты является , который часто используется в учебных целях при выполнении лабораторных работ. Метод основан на изучении параметров некоторой массы газа, переходящей из одного состояния в другое двумя последовательными процессами: адиабатическим и изохорическим.

Лабораторная установка включает стеклянный баллон, соединённый с манометром , краном и резиновой грушей. Груша служит для нагнетания воздуха в баллон. Специальный зажим предотвращает утечку воздуха из баллона. Манометр измеряет разность давлений внутри и вне баллона. Кран может выпускать воздух из баллона в атмосферу.

Пусть первоначально в баллоне было атмосферное давление и комнатная температура. Процесс выполнения работы можно условно разбить на два этапа, каждый из которых включает в себя адиабатный и изохорный процесс.

1-й этап:
При закрытом кране накачиваем в баллон небольшое количество воздуха и зажимаем шланг зажимом. При этом давление и температура в баллоне повысятся. Это адиабатический процесс . Со временем давление в баллоне начнёт уменьшаться вследствие того, что газ в баллоне начнёт охлаждаться за счёт теплообмена через стенки баллона. При этом давление будет уменьшаться при постоянном объёме. Это изохорный процесс. Выждав, когда температура воздуха внутри баллона сравняется с температурой окружающего воздуха, запишем показания манометра .

2-й этап:
Теперь откроем кран 3 на 1—2 секунды. Воздух в баллоне будет адиабатно расширяться до атмосферного давления. При этом температура в баллоне понизится. Затем кран закроем. Со временем давление в баллоне начнёт увеличиваться вследствие того, что газ в баллоне начнёт нагреваться за счёт теплообмена через стенки баллона. При этом снова будет увеличиваться давление при постоянном объёме. Это изохорный процесс. Выждав, когда температура воздуха внутри баллона сравнится с температурой окружающего воздуха, запишем показание манометра . Для каждой ветви 2-х этапов можно написать соответствующие уравнения адиабаты и изохоры. Получится система уравнений, которые включают в себя показатель адиабаты. Их приближённое решение приводит к следующей расчётной формуле для искомой величины:

Недостатком данного метода является то, что процессы быстрого расширения газа в ходе лабораторной работы не являются чисто адиабатическими ввиду теплообмена через стенку сосудов, а рассматриваемый газ заведомо не является идеальным. И хотя полученная в ходе лабораторной работы величина будет заведомо содержать методическую погрешность, всё же существуют различные способы её устранения, например, за счёт учёта времени расширения и количества подведенного за это время тепла.

См. также

Примечания

  1. Fox, R., A. McDonald, P. Pritchard: Introduction to Fluid Mechanics 6th ed. Wiley
  2. , с. 83.
  3. , с. 41.
  4. White, Frank M.: Fluid Mechanics 4th ed. McGraw Hill
  5. Lange’s Handbook of Chemistry, 10th ed. page 1524
  6. , с. 30—32.
  7. (недоступная ссылка)

Литература

  • Партингтон Дж. Р., Раковский А. В. Курс химической термодинамики / Пер. с англ. Я. В. Герасимова, проработка и дополнения проф. А. В. Раковского. — 2-е изд., стереотипное. — М. Л. : Госхимтехиздат , 1932. — 383 с.
  • Толпыго К. Б. Термодинамика и статистическая физика. — Киев: Изд-во Киевского ун-та, 1966. — 364 с.
  • Савельев И. В. Курс общей физики: Молекулярная физика и термодинамика. — М. : Астрель, 2001. — Т. 3. — 208 с. — 7000 экз. ISBN 5-17-004585-9 .
Источник —

Same as Показатель адиабаты