Решето поля функций
- 1 year ago
- 0
- 0
Эффе́кт по́ля ( англ. Field-effect ) в широком смысле состоит в управлении электрофизическими параметрами поверхности твёрдого тела с помощью электрического поля , приложенного по нормали к поверхности .
В качестве способов регистрации изменений электрофизических параметров под действием электрического поля могут быть использованы измерение проводимости , дифференциальной ёмкости — метод вольт-фарадных характеристик , поверхностной . Чаще всего под эффектом поля понимают изменение проводимости твёрдого тела под действием на него поперечного электрического поля.
В полупроводниковой технике под эффектом поля понимается влияние внешнего электрического поля на электропроводность полупроводника. В общем случае рассматривается полубесконечный полупроводник, имеющий как минимум одну поверхность, свойства которой и рассматриваются. Основным «дефектом» такого полупроводника является наличие поверхности (обрыв периодичности кристаллической решётки), что по умолчанию детерминирует наличие поверхностных состояний . Кроме того, на поверхности присутствуют различные дефекты и примеси , также вносят свой вклад в плотность поверхностных состояний. Основной теоретической проблемой эффекта поля является нахождение распределения поверхностного и внутреннего потенциала в полупроводнике, особенно при приложении внешнего электрического поля. Основной экспериментальной проблемой эффекта поля фиксация поверхностных состояний при изменении внешних факторов, долгое время не давало возможности для полноценного исследования поверхностной проводимости и практической реализации МДП-транзисторов . Эта проблема была решена с разработкой технологии кремния в начале 60-х годов XX века.
И само появление названия эффект поля, и развитие теории на первом этапе стали возможными благодаря работе Уильяму Шокли . Данная проблема относится к проблеме междисциплинарного класса, лежащей на пересечении фундаментальной физики и инженерных наук. Она зародилась в конце 20-х годов XX века, как прикладная реакция на стремительное развитие фундаментальной науки — квантовой механики . Тогда же вполне стихийным образом фундаментальная наука начала своё стремительное внедрение в практику, что вылилось во второй половине XX века в т. н. лозунг «наука — производственная сила технического прогресса». На протяжении почти 80-ти лет своего существования данное направление развития науки переживало свои взлёты и падения, пока на одном из этапов фундаментальные исследования не указали путь развития.
Сама проблема возникла в области инженерии, поэтому приоритет был защищён патентами в США — Лилиенфельд , а в Великобритании — . Это были довольно тривиальные идеи по практической реализации полупроводникового усилителя, управление которым осуществлялось бы электрическим полем. Осуществить эти идеи на практике попытался Шокли в конце 30-х годов XX века. В качестве полупроводника тогда использовали германий , в качестве диэлектрика — пластинки слюды , роль металлического электрода — металлическая пластинка или металлизированное покрытие пластинки слюды. Конечно Шокли получил модуляцию проводимости поверхности германия, однако эффект был незначительным. Более того, довольно нестабильным во времени, что не позволяло внедрить его в серийное производство. Только во второй половине 40-х годов XX века стало ясно, что основным дестабилизирующим фактором были т. н. поверхностные состояния в полупроводнике. Да и сам выбор полупроводника (германий) был не самым лучшим (даже сегодня практически отсутствует технология изготовления МДП-структур на основе германия).
Первым заметил доминирующую роль поверхностных состояний в полупроводнике Бардин , который затем вместе с Браттейном открыл т. н. биполярный эффект . В то время ещё не существовало теории выпрямляющих переходов в полупроводнике и поэтому даже сам процесс выпрямления приписывался поверхностным состояниям. Размещая достаточно близко точечные контакты будущих эмиттера и Бардин вместе с Браттейном и «открыли» биполярный эффект, а по сути впервые предложили практическую реализацию биполярного транзистора на точечных контактах. Очевидно, что в то время никакой теории не было, и поэтому мифическое взаимодействие контактов эмиттера и коллектора (чем ближе расположены, тем сильнее усиление) и воспринималось в то время, как физическое явление (эффект), теория которого, как надеялись тогда, будет разработана позднее. Само название эффект поля появилось впервые в работе Шокли и Пирсона, в которой экспериментально было доказано существование поверхностных состояний в полупроводнике. Роль Шокли на этом этапе была незначительна, поскольку он подвергся разочарованию, вызванному невозможностью в те времена реализации эффекта поля. Однако «открытие» биполярного эффекта стимулировало Шокли на фундаментальные исследования сначала точечного перехода, затем сплавного перехода и, наконец, всем известного p-n-перехода, что со временем и вылилось в теорию p-n-перехода Шокли, а затем и в теорию биполярного транзистора, базировавшуюся на понятии квазиуровня Ферми .
С появлением полупроводниковых переходов и биполярных транзисторов началась новая технологическая эра обработки полупроводников, сначала германия, а затем и кремния. Отрабатывались инженерные методы выращивания кристаллов и технологии разрезания пластин с последующей их шлифовкой. Более того, разрабатываемые методы диффузии , эпитаксии внесения примесей путём фотолитографии и т. д. И только в конце 50-х годов 20-го века уровень развития технологий достиг зрелости, и путём разработки технологии пассивации поверхности кремния Аталлою и Канго наконец была создана МДП-структура на кремнии с более или менее стабильными характеристиками.
Пассивация поверхности кремния стабилизовала поверхностные состояния и стала возможна практическая реализация МДП-транзисторов. Первые феноменологические модели МДП-транзисторов появились в пионерских работах Хофштейна, Хеймана, Ихантолы и Молла. Однако, основная фундаментальная работа по созданию теории МДП-транзистора, который базируется на фундаментальных принципах поверхностной проводимости была создана в 1964 году учеником Шокли — Са.
При теоретическом исследовании хода потенциала и распределения зарядов в полупроводнике вводятся следующие предположения:
Рассмотрим полупроводник p-типа. Плотность зарядов в полупроводнике ρ(x) определяется суммой зарядов электронов n, дырок p и примесей N:
В случае невырожденного полупроводника
где β=q/kT — обратный температурный потенциал, n i — концентрация носителей в собственном полупроводнике. Поскольку при и , а поэтому из (1) и (2) следует, что
Подстановка (2) и (3) в (1) дает:
а одномерное уравнение Пуассона запишется в виде:
где — диэлектрическая проницаемость полупроводника. В более компактной форме это уравнение будет:
где дебаевская длина экранирования в собственном полупроводнике, — безразмерные потенциалы. Интегрируя (5) от до и учитывая, , и , находим:
где знак «+» берется при . Таким образом, величина электрического поля на поверхности полупроводника будет:
Полный заряд на единицу поверхности полупроводника может быть найден из последнего уравнения путём использования теоремы Гаусса:
Для нахождения зависимости необходимо проинтегрировать (6) от до :
что в общем случае можно сделать численными методами. Подстановка (9) в (4) даёт возможность определения зависимости для заданных значений и . В случае собственного полупроводника ( ) решение (9) находится в аналитическом виде. Уравнение (9) при этом переходит в
откуда находим:
а из (4) и (8) находим:
Интегрируя (11) и используя (5), можно найти выражение для полного заряда на единицу поверхности:
Разделив (13) на (12), находим:
Это соотношение определяет относительную величину заряда, который сосредоточен в слое от до , где потенциал равен u. С помощью (10) величина выражается в явном виде через отношение . Другой случай, допускающий аналитическое решение уравнения (9) — случай сильной инверсии на поверхности полупроводника:
Здесь в подкоренном выражении уравнения (9) учитывается только средний член, так что интегрирование дает:
Аналогичным образом из (4) находим:
или исключая u с помощью (15),
Область использования (16) достаточно узкая, поскольку величина u не должна быть слишком большой, чтобы выполнялось предположение об отсутствии вырождения, и в то же время она не должна быть малой для выполнения условия (14).
Полный заряд в полупроводнике создаётся электронами, дырками и ионизированными примесями. Заряд электронов в инверсном слое можно получить интегрированием величины от до , где :
Изменив переменную интегрирования с помощью (2), находим:
Здесь необходимо использовать статистику Ферми-Дирака (статистика Максвелла-Больцмана даёт завышенные результаты), когда уровень Ферми близок к зоне проводимости или находится в её середине. Эффективная толщина обеднённой области x d определяется из уравнения
Здесь предполагается, что при плотность объёмного заряда равна нулю, а при имеем . Когда заряд инверсного слоя мал по сравнению с зарядом обеднённой области, , а в случае сильной инверсии величина становится практически независимой от и приближается к предельному значению :
Для кремния при комнатной температуре в диапазоне концентраций примесей можно пользоваться следующим приближенным соотношением:
МДП-структура — это плоская трехслойная структура, состоящая из тонкого слоя металла, чуть более толстого слоя диэлектрика и толстого слоя полупроводника (металл-диэлектрик/окисел- полупроводник). В свободной природе не встречается. Отсюда истоки некоторого пренебрежения, как к самой МДП структуре так и эффекту поля, связанные с искусственностью самой структуры и явлений, что в ней наблюдаются. На самом деле МДП-структура есть идеальный физический объект (хоть и искусственный), в котором легко реализуется однородность электрического поля (в атомах реализуется идеальная изотропность). Отсюда также вытекает её идеалистичность для исследования эффекта поля на поверхности полупроводника, и всех тех попутных явлений (классических и квантовых), которые связаны с этим эффектом.
Впервые МДП-структура была получена на практике в 1960 году после успешной реализации технологии пассивации кремния Канго и Аталлою. В рамках этой технологии МДП-структура создавалась в одном технологическом процессе: сначала поверхность кремния окислялась, а уже на окись напылялась металлизация. Благодаря единому процессу, металлический электрод практически был эквидистантно поверхности раздела окисел — кремний, что обеспечивало однородность электрического поля на всей площади . На основе этих МДП-структур были изготовлены первые МДП-транзисторы.
Тривиальный учёт статистики Ферми-Дирака вместо Максвелла-Больцмана не выводит теорию за пределы квазиклассического подхода. Более того, даже учёта т. н. треугольной потенциальной ямы на поверхности полупроводника, что приводит к появлению дискретных уровней энергии в зоне проводимости (валентной зоне) также не выводит за указанные пределы.
Основной особенностью МДП-структуры является то, что на поверхности раздела диэлектрик-полупроводник индуцируется p-n — переход, в котором носители заряда имеют свойства двумерной (2D-) системы, поведение которой до сих пор практически не изучена. Отсюда и т. н. «Неожиданность» с открытием квантового эффекта Холла, плоского атома и т. д.
Если на поверхности полупроводника в МДП-структуре созданы омические контакты, то измеряя проводимость между ними в зависимости от напряжения смещения, можно получить ряд полезных сведений о свойствах поверхности. Этот метод исследования был использован в классических экспериментах Шокли и Пирсона.
Наиболее простой путь вычисления поверхностной проводимости состоит в нахождении избыточной поверхностной плотности электронов и дырок ΔN и ΔP в функции поверхностного потенциала. Обозначая через и плотности носителей заряда в случае плоских зон , можно записать:
где
или
Здесь выражение для был представлен формулой (6). Если предположить, что носители заряда не захватываются поверхностными ловушками, тогда изменение поверхностной проводимости будет выражено как:
где и — эффективные подвижности носителей заряда, которые зависят в общем случае от . Зависимость для Si и Ge была вычислена рядом авторов. Здесь только стоит внимания то, что величина для легированного полупроводника имеет минимум при
Графическое представление этой зависимости проводят для случая . Здесь рост проводимости при u<0 соответствует «режиму аккумуляции», при u>0 с удалением уровня Ферми сверху валентной зоны, когда проводимость падает, а затем снова резко возрастает за счёт образования инверсного слоя.
Если использовать выпрямительные контакты при измерении проводимости, тогда величина определяется носителями заряда одного типа. Поэтому в подынтегральных выражениях следует принимать только один из составляющих.
Исследованию эффективной подвижности носителей заряда в приповерхностных слоях полупроводника посвящено много теоретических и экспериментальных работ. Дж. Шриффером была развита классическая теория поверхностной подвижности, из которой следует, что за счёт дополнительного рассеяния носителей на границе раздела диэлектрик-полупроводник и воздействия электрического поля величина падает с ростом поверхностного потенциала и всегда остаётся меньше подвижности в объёме полупроводника. Затем теория Шриффера была усовершенствована путём введения в рассмотрение анизотропии кристалла, зеркального отражения носителей от поверхности и ряда других эффектов, однако результаты расчётов плохо совпадают с экспериментальными данными. Основная причина этих различий состоит в том, что классический подход к проблеме поверхности не является справедливое, поскольку здесь мы имеем малую толщину слоя, в котором движутся носители заряда. Эта толщина является величина одного порядка с длиной волны де Бройля и поэтому наличие сильного электрического поля приводит к появлению квантовых явлений.
Численные эксперименты по исследованию поверхностной подвижности, в которых особое внимание уделялось стабильности и воспроизводимости результатов, показали что в инверсных слоях значения и примерно вдвое меньше чем в объёме полупроводника и не зависят от электрического поля.
Поверхностная рухливисить основных носителей, которая изучалась на МДП-структурах в режиме аккумуляции, несколько превышает подвижность в инверсных слоях. При увеличении электрического поля значения падают медленнее, чем предсказывает теория.