Гаплогруппа R1a (Y-ДНК)
- 1 year ago
- 0
- 0
Филогене́тика или филогенети́ческая система́тика — область биологической систематики , которая занимается выявлением и прояснением эволюционных взаимоотношений среди разных видов жизни на Земле, как современных, так и вымерших. Эволюционная теория утверждает, что сходство тех или иных особей или видов часто указывает на общее происхождение или общего предка. Потому взаимоотношения, установленные филогенетической систематикой , часто описывают эволюционную историю видов и их филогенез , исторические взаимоотношения между ветвями организмов или их частей, например, их генов . Филогенетическая таксономия , являющаяся ответвлением, но не логическим продолжением филогенетической систематики , занимается классификацией групп организмов согласно степени их эволюционных отношений.
Основателем систематики, области науки, которая занимается классификацией живых организмов и взаимоотношениями между компонентами живого, считается Карл Линней . Однако только в конце 1950-х годов немецкий энтомолог Вилли Хенниг высказал идею, что систематика должна отображать известную эволюционную историю так близко, как только возможно . Так был основан подход к систематике, который он назвал филогенетической систематикой. Противники Хеннига пренебрежительно называли его последователей «кладистами» , из-за акцента на признание только монофилетичных групп или клад . Однако кладисты быстро приняли это название как полезный термин , и кладистический подход начал преобладать в систематике. Противоположностью филогенетической систематики является фенетика .
Систематика описывает взаимоотношения среди таксонов и призвана помочь нам понять историю всех живых организмов. Но история не является чем-то, что мы можем увидеть, она произошла один раз и оставила только косвенные показатели фактических событий. Ученые используют эти показатели, чтобы построить гипотезы, или модели, истории жизни. В филогенетике наиболее удобный путь визуального представления эволюционных взаимоотношений среди групп организмов осуществляется посредством графиков, которые называются филогенетическими деревьями.
Существуют две главные группы методов изучения филогенетических взаимоотношений: фенетические и кладистические методы. Важно отметить, что фенетика и кладистика имели запутанные взаимоотношения в течение последних 40 лет XX века [ источник не указан 3858 дней ] . Большинство современных биологов-эволюционистов отдают преимущество кладистике [ источник не указан 3858 дней ] , хотя, строго говоря, кладистический подход может приводить к неинтуитивным результатам.
Альтернативный подход к схематическому изображению взаимоотношений между таксонами называется кладистикой. Основное предположение кладистики заключается в том, что члены группы имеют общую эволюционную историю. Потому они более близко относятся друг к другу, чем к другим группам организмов. Связанные группы определяются по наличию набора уникальных особенностей (апоморфий), которые отсутствовали у отдаленных предков, но которые характерны для большинства или всех организмов в пределах группы. Полученные характеристики, относящиеся к членам группы, называются синапоморфиями . Потому, в отличие от фенетических, кладистические группы не зависят от того, сходны ли организмы по физическим чертам, а зависят от их эволюционных взаимоотношений. Действительно, в кладистических анализах у двух организмов могут быть общими многочисленные характеристики, но они будут членами разных групп.
Кладистический анализ использует ряд предположений. Например, считается что виды являются только раздвоением, или отделением, из наследственной группы. В случае гибридизации (скрещивание) или горизонтального переноса генетической информации виды считаются исчезнувшими, а такие явления — редкими или отсутствующими. Кроме того, кладистические группы должны иметь следующие характеристики: все виды в группе должны разделять общего предка, и все виды, полученные от общего предка, должны войти в таксон. Соблюдение этих требований приводит к следующим терминам, которые используются для ссылки на разные возможные способы состава групп:
Макромолекулярные данные, под которыми имеется в виду последовательности генетического материала ( ДНК ) и белков , накапливаются всё более быстрыми темпами благодаря успехам молекулярной биологии. Для эволюционной биологии быстрое накопление данных о последовательностях целых геномов имеет значительную ценность, потому что сама природа ДНК позволяет использовать его как «документ» эволюционной истории. Сравнения последовательностей ДНК разных генов у разных организмов могут сказать учёному много нового об эволюционных взаимоотношениях организмов, которые не могут быть обнаружены иным образом: на основе морфологии, или по внешней форме организмов, и их внутренней структуре. Поскольку геномы эволюционируют через постепенное накопление мутаций , количество отличий в последовательностях нуклеотидов между парой геномов разных организмов должно дать информацию о том времени, когда данные организмы имели общего предка. Два генома организмов, чьи эволюционные линии разошлись в недавнем прошлом, должны иметь меньшие отличий, чем у организмов, чей общий предок существовал очень давно. Потому, сравнивая разные геномы друг с другом, возможно получить сведения об эволюционном взаимоотношении соответствующих организмов. Это и является главной задачей молекулярной филогенетики.
Молекулярная филогенетика пытается определить скорость и отличия изменений в ДНК и белках, чтобы восстановить эволюционную историю генов и организмов. Чтобы получить эту информацию, могут использоваться два общих подхода. В первом из них учёные используют ДНК, чтобы изучать эволюцию организма. Во втором подходе используются разные организмы, чтобы изучать эволюцию ДНК. В любом подходе общая цель — сделать вывод относительно процесса эволюции организма по изменениям ДНК и процесса молекулярной эволюции по картине изменений ДНК.