Interested Article - Цепь (алгебраическая топология)

Цепь в алгебраической топологии и дифференциальной геометрии — конструкция, обобщающее понятие многоугольника , используется для определения гомологий пространства и интегрирования дифференциальных форм на нём.

Определение

Криволинейным симплексом называется дважды непрерывно дифференцируемое невырожденное отображение симплекса в евклидовом пространстве в топологическое пространство .

Цепью называется элемент свободного модуля над кольцом целых чисел, порождённого множеством симплексов данного топологического пространства, то есть формальная сумма

Число называется кратностью симплекса . Сумма цепей определяется как сумма элементов модуля.

Граница криволинейного симплекса определяется как образ границы симплекса под действием отображения . На произвольные цепи граничный оператор продолжается по линейности, то есть

Связанные определения

  • Цикл — это цепь, граница которой равна нулю.

Литература

  • Арнольд В. И. Математические методы классической механики. — 5-е изд., стереотипное. — М. : Едиториал УРСС, 2003. — 416 с. — 1500 экз. ISBN 5-354-00341-5 .
Источник —

Same as Цепь (алгебраическая топология)