Ряд Гильберта и многочлен Гильберта
- 1 year ago
- 0
- 0
Четырнадцатая проблема Гильберта — четырнадцатая из проблем , поставленных Давидом Гильбертом в его знаменитом докладе на II Международном Конгрессе математиков в Париже в 1900 году. Она посвящена вопросу конечной порождённости возникающих при определённых конструкциях колец. Исходная постановка Гильберта была мотивирована работой Маурера, в которой утверждалась конечная порождённость алгебры инвариантов линейного действия алгебраической группы на векторном пространстве; собственно же вопрос Гильберта касался кольца, получаемого пересечением подполя в поле рациональных функций с кольцом многочленов.
Однако вскоре после доклада выяснилось, что работа Маурера содержала ошибку, — и вопрос Гильберта начали рассматривать как вопрос о конечной порождённости алгебр инвариантов линейных алгебраических групп. Неожиданным образом оказалось, что ответ на этот вопрос отрицателен: в 1958 году на конгрессе в Эдинбурге М. Нагата предъявил к нему контрпример . Им была построена подгруппа в GL(n), алгебра инвариантов которой не является конечно порождённой. Эта конструкция была затем упрощена Стейнбергом в его работе 1997 года .
14. Доказательство конечности некоторой полной системы функций.
<...> Мауреру недавно удалось распространить доказанные Жорданом и мною теоремы конечности в теории инвариантов на случай, когда инварианты определяются не общей проективной группой, как в обыкновенной теории инвариантов, а произвольной её подгруппой. <...>
Пусть дано некоторое число m целых рациональных функций от переменных :
Всякая целая рациональная связь между , если в неё внесены эти их значения, очевидно, тоже представляет целую рациональную функцию от . Вполне, однако, могут существовать дробные рациональные функции от , которые после подстановки (S) приведут к целым функциям от . Каждую такую функцию <...> я буду называть относительно целой функцией от . <...> Проблема, таким образом, выражается в следующем: установить, всегда ли возможно найти такую конечную систему относительно целых функций от , через которую любая другая относительно целая функция выражается целым и рациональным образом. <...>
Иными словами, это вопрос о конечной порождённости алгебры , где — порождённое поле. Поскольку всякое промежуточное поле является конечно-порожденым как расширение k, в итоге на современном языке исходная формулировка Гильберта звучит следующим образом:
Пусть — некоторое поле, содержащее основное поле k. Правда ли, что алгебра конечно порождена?