Interested Article - Физика элементарных частиц

Мезон Мезон Барион Нуклон Кварк Лептон Электрон Адрон Атом Молекула Фотон W- и Z-бозоны Глюон Гравитон Электромагнитное взаимодействие Слабое взаимодействие Сильное взаимодействие Гравитация Квантовая электродинамика Квантовая хромодинамика Квантовая гравитация Электрослабое взаимодействие Теория великого объединения Теория всего Элементарная частица Вещество Бозон Хиггса
Краткий обзор различных семейств элементарных и составных частиц и теории, описывающие их взаимодействия . Элементарные частицы слева — фермионы , справа — бозоны . ( Термины — гиперссылки на статьи Википедии )

Фи́зика элемента́рных части́ц (ФЭЧ), часто называемая также субъядерной физикой — раздел физики , изучающий структуру и свойства элементарных частиц и их взаимодействия .

Теоретическая ФЭЧ

Теоретическая ФЭЧ строит теоретические модели для объяснения данных, полученных в действующих экспериментах, получения предсказаний для будущих экспериментов и разработки математического инструментария для проведения исследований такого рода. На сегодняшний день основным орудием в теоретической физике элементарных частиц является квантовая теория поля . В рамках этой теоретической схемы любая элементарная частица рассматривается как квант возбуждения определённого квантового поля. Для каждого типа частиц вводится собственное поле. Квантовые поля взаимодействуют, в этом случае их кванты могут превращаться друг в друга.

На сегодняшний день основным инструментом создания новых моделей в ФЭЧ является построение новых лагранжианов . Лагранжиан состоит из динамической части, которая описывает динамику свободного квантового поля (не взаимодействующего с другими полями), и частью, описывающей либо самодействие поля, либо взаимодействие с другими полями. Если полный лагранжиан динамической системы известен, то, согласно лагранжеву формализму КТП, можно выписать уравнения движения (эволюции) системы полей и пытаться решить эту систему.

Главным результатом современной теоретической ФЭЧ является построение Стандартной модели физики элементарных частиц. Данная модель базируется на идее калибровочных взаимодействий полей и механизме спонтанного нарушения калибровочной симметрии (механизм Хиггса). За последние пару десятков лет её предсказания были многократно перепроверены в экспериментах, и в настоящее время она — единственная физическая теория, адекватно описывающая устройство нашего мира вплоть до расстояний порядка 10 −18 м. Всего модель описывает 61 частицу .

Перед физиками, работающими в области теоретической ФЭЧ, стоят две основные задачи: создание новых моделей для описания экспериментов и доведение предсказаний этих моделей (в том числе и Стандартной модели) до экспериментально проверяемых величин. Второй задачей занимается феноменология элементарных частиц .

Концепция взаимодействия в ФЭЧ

Взаимодействие частиц в ФЭЧ принципиально отличается от взаимодействия объектов в других областях физики. Классическая механика изучает движение тел, которые, в принципе, могут друг с другом взаимодействовать. Однако механизмы этого взаимодействия в классической механике не уточняются. В противоположность этому, ФЭЧ уделяет одинаковое внимание как самим частицам, так и процессу их взаимодействия. Связано это с тем, что в ФЭЧ удаётся описать электромагнитное, сильное и слабое взаимодействие как обмен виртуальными частицами . Важным постулатом в таком описании явилось требование симметрии нашего мира относительно калибровочных преобразований.

Равноправие частиц и их взаимодействий красивым образом проявляется в суперсимметричных теориях, в которых постулируется существование в нашем мире ещё одной скрытой симметрии: суперсимметрии . Можно сказать, что при преобразовании суперсимметрии частицы превращаются во взаимодействия, а взаимодействия — в частицы.

Уже отсюда видна исключительная фундаментальность ФЭЧ — в ней делается попытка понять многие свойства нашего мира, которые до этого (в других разделах физики) принимались лишь как данность.

Экспериментальная ФЭЧ

Экспериментальная физика элементарных частиц делится на два больших класса: ускорительную и неускорительную.

Ускорительная ФЭЧ — это разгон долгоживущих элементарных частиц в ( ускорителе ) до высоких энергий и столкновение их друг с другом или с неподвижной мишенью. В процессе такого столкновения удаётся получить очень высокую концентрацию энергии в микроскопическом объёме, что приводит к рождению новых, обычно нестабильных, частиц. Изучая характеристики таких реакций (количество рождённых частиц того или иного сорта, зависимость этого количества от энергии, типа, поляризации исходных частиц, от угла вылета и т. д.), можно восстановить внутреннюю структуру исходных частиц, их свойства, то, как они взаимодействуют друг с другом.

Неускорительная ФЭЧ — это процесс «пассивного наблюдения» за нашим миром. В неускорительных экспериментах исследуются элементарные частицы естественного происхождения. Типичные неускорительные эксперименты — наблюдение за нейтрино в так называемых нейтринных телескопах, поиск распада протона , безнейтринного двойного бета-распада и прочих крайне редких событий в большом объёме вещества, эксперименты с космическими лучами .

Нерешённые проблемы физики элементарных частиц

В современной физике элементарных частиц специалисты выделяют ряд нерешённых проблем .

Экспериментально установленное явление нейтринных осцилляций указывает на неполноту Стандартной модели . Кроме того, имеются отдельные экспериментальные свидетельства того, что имеется разница в амплитуде осцилляций нейтрино и антинейтрино .

Астрофизические и космологические исследования указывают на существование физики за пределами Стандартной модели. Так, наблюдательным фактом является барионная асимметрия Вселенной , в то время как в Стандартной модели барионное число является константой. Другим фактом является наличие в космосе так называемой скрытой массы , которая обычно объясняется существованием тёмной материи неизвестной современной физике природы. И наконец, необъяснимым в рамках современной физики является факт ускоренного расширения Вселенной , который обычно связывают с так называемой тёмной энергией .

Отдельно стоит так называемая проблема калибровочной иерархии , заключающаяся в том, что характерные энергетические масштабы сильного (200 МэВ) и электрослабого (256 ГэВ) взаимодействий на много порядков ниже масштаба гравитационного взаимодействия (10 19 ГэВ), а также предполагаемых масштаба Большого объединения взаимодействий (10 16 ГэВ) и масштаба, связанного с CP-сохранением в сильных взаимодействиях (10 14 ГэВ). Актуальными являются вопросы природы такой иерархии, причин её устойчивости и наличия большой «пустыни» между двумя группами масштабов.

Ещё одна иерархическая проблема связана с фермионными массами. В рамках Стандартной модели все фермионные поля ( лептоны и кварки ) образуют три поколения. При этом массы поколений отличаются во много раз, хотя остальные свойства частиц разных поколений не отличаются. Объяснение такой иерархии и составляет одну из проблем современной физики.

Имеются также теоретические трудности в описании адронов . В частности, для понимания природы конфайнмента требуется привлечение непертурбативных методов квантовой хромодинамики .

Физика за пределами Стандартной модели

Физика за пределами Стандартной модели (иначе называемая Новая физика ) относится к теоретическим разработкам , которые необходимы, чтобы объяснить недостатки Стандартной модели , такие как происхождение массы , сильная CP-проблема , нейтринные осцилляции , асимметрия материи и антиматерии , происхождение тёмной материи и тёмной энергии . Другая проблема заключается в математических основах самой Стандартной модели — Стандартная модель не согласуется с общей теорией относительности в том смысле, что одна или обе теории распадаются в своих описаниях на более мелкие при определённых условиях (например, в рамках известных сингулярностей пространства-времени , таких как Большой взрыв и горизонты событий чёрных дыр ).

Теории, которые лежат за пределами Стандартной модели, включают в себя различные расширения Стандартной модели через суперсимметрию , такие как (англ.) и (англ.) , либо совершенно новые объяснения, такие как теория струн , M-теория и дополнительные измерения . Поскольку эти теории, как правило, полностью согласуются с текущими наблюдаемыми явлениями или не доведены до состояния конкретных предсказаний, вопрос о том, какая теория является правильной (или по крайней мере «лучшим шагом» к Теории всего ), может быть решён только с помощью экспериментов. В настоящее время это одна из наиболее активных областей исследований как в теоретической, так и в экспериментальной физике.

См. также

Примечания

  1. С. В. Троицкий . // УФН . — 2012. — Т. 182 . — С. 77—103 . 28 марта 2013 года.
  2. Дата обращения: 26 марта 2013. Архивировано из 17 октября 2007 года.

Ссылки

Источник —

Same as Физика элементарных частиц