Теорема Стокса
- 1 year ago
- 0
- 0
Теорема о равнобедренном треугольнике — классическая теорема геометрии , утверждающая, что углы, противолежащие боковым сторонам равнобедренного треугольника , равны. Эта теорема появляется как предложение 5 книги 1 «Начал» Евклида .
Справедливо и обратное утверждение: если два угла невырожденного треугольника равны, то стороны, противоположные им, также равны. Теорема справедлива в абсолютной геометрии , а значит и в геометрии Лобачевского , она выполняется также в сферической геометрии .
Эту теорему, как и (реже) Теорему Пифагора , иногда называют лат. pons asinorum — «мост ослов». Словосочетание известно с 1645 г.
Существуют два возможных объяснения такого названия. Одно состоит в том, что чертёж, используемый в доказательстве Евклида напоминал мост. Другое объяснение в том, что это первое серьёзное доказательство в «Началах» Евклида — «ослы» его осилить не могут .
Евклид доказывает дополнительно, что если боковые стороны треугольника продолжить за основание, то углы между продолжениями и основанием тоже равны. То есть, на чертеже к доказательству Евклида.
Прокл указывает на то, что Евклид никогда не использует это дополнительное утверждение и его доказательство можно немного упростить, проведя вспомогательные отрезки к боковым сторонам треугольника, а не к их продолжениям. Остальная часть доказательства, проходит почти без изменений. Прокл, предположил, что второй вывод может быть использован как обоснование в доказательстве последующего предложения, где Евклид не рассмотрел все случаи.
Доказательство опирается на предыдущее предложение в «Началах» — на то, что сегодня называют признак равенства треугольников по двум сторонам и углу между ними.
Пусть — равнобедренный треугольник с равными сторонами и . Отметим произвольную точку на стороне и построим точку на стороне так, что . Проведём отрезки , и . Поскольку , и угол общий, по равенству двух сторон и угла между ними, , а значит равны их соответствующие стороны и углы. Отсюда угол и и . Поскольку и , вычитания из равных частей равные получаем . Применяя вновь признак равенства треугольников по двум сторонам и углу между ними, получаем, что . Отсюда и . Вычитания из равных частей равные получаем . Вновь по тому же признаку, получаем, что . Следовательно . ■
Прокл также приводит очень короткое доказательство, приписываемое Паппу . Оно проще и не требует дополнительных построений. В доказательстве применяется признак равенства по двум сторонам и углу между ними к треугольнику и его зеркальному отражению.
Пусть — равнобедренный треугольник с равными сторонами и . Применив признак равенства треугольников по двум сторонам и углу между ними , получаем . Действительно, эти треугольники имеют общий угол при вершине и равные прилежащие стороны . В частности, . ■
Доказательство Паппа иногда сбивает учеников тем, что нужно сравнивать треугольник «с самим собой». Поэтому, часто в учебниках даётся следующее более длинное доказательство. Оно проще чем доказательство Евклида, но использует понятие биссектрисы. В «Началах» построение биссектрисы угла приводится только в предложении 9. Поэтому порядок изложения приходится менять, чтобы избежать возможности кругового рассуждения.
Пусть — равнобедренный треугольник с равными сторонами и . Проведём биссектрису угла . Пусть — точка пересечения биссектрисы со стороной . Заметим, что поскольку , и общая сторона. Значит . ■
Лежандр использует подобные конструкции в своих «Éléments de géométrie», но, принимая как середину . Доказательство аналогично, но использует признак равенства треугольников по трём сторонам.
It formed at bridge across which fools could not hope to pass, and was therefore known as the pons asinorum, or bridge of fools.¹
…
1. The term is something applied to the Pythagorean Theorem.