Теорема Стокса
- 1 year ago
- 0
- 0
В термодинамике и кинетической теории , -теорема , полученная Больцманом в 1872 году , описывает неубывание энтропии идеального газа в необратимых процессах, исходя из уравнения Больцмана .
На первый взгляд может показаться, что она описывает необратимое возрастание энтропии исходя из микроскопических обратимых уравнений динамики. В своё время этот результат вызвал бурные споры.
При временно́й эволюции к равновесному состоянию энтропия внешне замкнутой системы возрастает и остается неизменной при достижении равновесного состояния .
Величина определяется как интеграл по пространству скоростей:
где — вероятность.
Используя уравнение Больцмана, можно показать, что не может возрастать.
Для системы из статистически независимых частиц, соотносится с термодинамической энтропией посредством:
таким образом, согласно -теореме, не может убывать.
Однако Лошмидт выдвинул возражение, что невозможно вывести необратимый процесс из симметричных во времени уравнений динамики. Решение парадокса Лошмидта заключается в том, что уравнение Больцмана основано на предположении «молекулярного хаоса» , то есть для описания системы достаточно одночастичной функции распределения. Это допущение по сути и нарушает симметрию во времени.
, где , , - любая функция, удовлетворяющая уравнению Больцмана
Доказательство следует из неравенства Больцмана , где - любая функция, удовлетворяющая уравнению Больцмана, - интеграл столкновений. Для доказательства умножаем обе части уравнения Больцмана на и интегрируем по всем возможным скоростям . При этом используется, что , неравенство Больцмана , - инвариант столкновений, обращение в нуль при стремлении скорости к бесконечности .