Interested Article - Свободная абелева группа

В математике свободная абелева группа ( свободный Z-модуль ) — это абелева группа , имеющая базис , то есть такое подмножество элементов группы, что для любого её элемента существует единственное его представление в виде линейной комбинации базисных элементов с целыми коэффициентами, из которых только конечное число являются ненулевыми. Элементы свободной абелевой группы с базисом B называют также формальными суммами над B . Свободные абелевы группы и формальные суммы используются в алгебраической топологии при определении групп цепей и в алгебраической геометрии при определении дивизоров .

Как и векторные пространства , свободные абелевы группы классифицируются мощностью базиса; эта мощность не зависит от выбора базиса и называется рангом группы .

Пример и контрпример

  • Группа , прямая сумма двух копий бесконечной циклической группы — свободная абелева группа ранга 2, так как имеет базис , где и . Произвольный элемент группы единственным образом представляется в виде их линейной комбинации: . Более общо, свободной абелевой группой является любая решётка в
  • Никакая конечная абелева группа , кроме тривиальной , не является свободной (так как свободная абелева группа не имеет кручения ).

Формальные суммы

Для любого множества можно определить группу элементы которой — функции из во множество целых чисел а скобки обозначают тот факт, что все функции принимают ненулевые значения не более чем на конечном множестве. Сложение функций определяется поточечно: относительно этого сложения образует свободную абелеву группу, базис которой находится во взаимно-однозначном соответствии со множеством Действительно, любому элементу множества можно сопоставить функцию такую что и для всех элементов из множества таких, что Любая функция из представима единственным образом в виде конечной линейной комбинации базисных функций:

Группа с базисом единственна с точностью до изоморфизма; её элементы называются формальными суммами элементов

Свойства

Универсальное свойство

Свободные группы можно охарактеризовать с помощью следующего универсального свойства : функция из множества B в абелеву группу F является вложением базиса в эту группу, если для любой функции из B в произвольную абелеву группу A существует единственный гомоморфизм групп такой что Как и для любого универсального свойства, удовлетворяющий этому свойству объект автоматически единственен с точностью до изоморфизма, поэтому данное универсальное свойство можно использовать для доказательства того, что все другие определения свободной группы с базисом B эквивалентны.

Подгруппы

Теорема : Пусть — свободная абелева группа и пусть — её подгруппа . Тогда также является свободной абелевой группой .

Для доказательства этой теоремы необходима аксиома выбора . В книге Сержа Ленга «Алгебра» приводится доказательство, использующее лемму Цорна , тогда как Соломон Лефшец и Ирвинг Капланский утверждали, что использование принципа вполне упорядочивания вместо леммы Цорна даёт более интуитивно понятное доказательство .

В случае конечнопорождённых групп доказательство более простое и позволяет получить более точный результат:

Теорема : Пусть — подгруппа конечнопорождённой свободной группы . Тогда свободна, существует базис группы и натуральные числа (то есть каждое из чисел делит последующее), такие что образуют базис Более того, последовательность зависит только от и , но не от выбора базиса .

Кручение и делимость

Все свободные абелевы группы свободны от кручения , то есть не существует элемента группы x и ненулевого числа n , таких что nx = 0. Обратно, любая конечно порождённая свободная от кручения абелева группа свободна . Аналогичные утверждения верны, если заменить слова «группа без кручения» на « плоская группа»: для абелевых групп плоскость эквивалентна отсутствию кручения.

Группа рациональных чисел — пример абелевой группы без кручения, не являющейся свободной. Чтобы доказать последнее утверждение, достаточно заметить, что группа рациональных чисел является делимой , тогда как в свободной группе никакой из элементов базиса не может быть кратен другому элементу .

Прямые суммы и произведения

Любая свободная абелева группа может быть описана как прямая сумма некоторого множества копий (равномощного её рангу). Прямая сумма любого количества свободных абелевых групп также свободна; в качестве её базиса можно взять объединение базисов слагаемых.

Прямое произведение конечного числа свободных абелевых групп также является свободным и изоморфно их прямой сумме. Однако для произведения бесконечного числа групп это не верно; например, группа Баера — Шпекера прямое произведение счётного числа копий не является свободной абелевой . В то же время, любая её счётная подгруппа является свободной абелевой .

Примечания

  1. Hungerford, Thomas W. II.1 Free abelian groups // . — Springer, 1974. — Vol. 73. — P. 70–75. — (Graduate Texts in Mathematics). 9 августа 2014 года.
  2. Hofmann, Karl H.; Morris, Sidney A. . — Walter de Gruyter, 2006. — Vol. 25. — P. 640. — (De Gruyter Studies in Mathematics). — ISBN 9783110199772 . 9 августа 2014 года.
  3. Mollin, Richard A. [ Mollin, Richard A. . — CRC Press, 2011. — P. 182. — ISBN 9781420083293 . от 11 августа 2014 на Wayback Machine
    Advanced Number Theory with Applications]. — CRC Press, 2011. — P. 182. — ISBN 9781420083293 .
  4. Blass, Andreas. Injectivity, projectivity, and the axiom of choice // Transactions of the American Mathematical Society. — 1979. — Vol. 255. — P. 31–59. — doi : . . Example 7.1 предоставляет модель теории множеств и несвободную проективную абелеву группу в этой модели, которая является подгруппой свободной абелевой группы где A — множество атомов.
  5. Lang, Serge. Algebra. — Springer-Verlag, 2002. — Vol. 211. — P. 880. — (Graduate Texts in Mathematics). — ISBN 978-0-387-95385-4 .
  6. Kaplansky, Irving. . — AMS, 2001. — Vol. 298. — P. 124–125. — (AMS Chelsea Publishing Series). — ISBN 9780821826942 . 3 января 2014 года.
  7. Lee, John M. Free Abelian Groups // . — Springer. — P. 244–248. — (Graduate Texts in Mathematics). — ISBN 9781441979407 . 11 августа 2014 года.
  8. Griffith, Phillip A. . — University of Chicago Press, 1970. — P. , 111–112. — (Chicago Lectures in Mathematics). — ISBN 0-226-30870-7 .
  9. Baer, Reinhold. Abelian groups without elements of finite order // Duke Mathematical Journal. — 1937. — Vol. 3, № 1 . — P. 68–122. — doi : .
  10. Specker, Ernst. Additive Gruppen von Folgen ganzer Zahlen // Portugaliae Math. — 1950. — Vol. 9. — P. 131–140.
Источник —

Same as Свободная абелева группа