Interested Article - Закон двойственности

Зако́н двойственности — закон математической логики, который гласит: «если формулы А и В равносильны , то и двойственные им формулы равносильны».

Американский логик А. Чёрч называет закон двойственности принципом дуальности ( лат. dualis — двойной, двойственный) и выражает его символически следующим образом:

Если ⊢ A и если А1 — дуальная формула к правильно построенной формуле А, то ⊢ ~ А1, где ⊢ — знак выводимости , ~ — знак отрицания. Читается эта запись так:

«Если выводится А и если А1 двойственна правильно построенной формуле А, то выводится и не-А»

  • специальный принцип дуальности для импликации : Если ⊢ A → В и если А1 и В1 — дуальные к правильно построенным формулам А и В соответственно, то

⊢ В1 → А1, где → — знак импликации («если…, то…»);

  • специальный принцип дуальности для эквивалентности : Если ⊢ A ≡ В и если А1 и В1 — дуальные к правильно построенным формулам А и В соответственно, то ⊢ А1 ≡ В1, где ≡ — знак эквивалентности («если…, и только если»)

Двойственность — термин математической логики, применяемый в случае таких пар понятий, как конъюнкция и дизъюнкция , квантор общности , и квантор существования .

Двойственные формулы — в алгебре логики — это такие формулы, которые получаются одна из другой путём замены в них каждого знака конъюнкции на знаки дизъюнкции и наоборот. При этом предполагается, что формулы построены лишь с помощью операций ∧, ∨, ~.

Например, формулы: ((А ∨ ) ∧ С) и ((А ∧ ) ∨ С) являются двойственными, где ∨ — связка «или» (знак дизъюнкции ), ∧ — связка «и» (знак конъюнкции) , «—» — знак отрицания ,

— отрицание В, то есть не-В.

Литература

  • Введение в математическую логику. М., Издательство иностранной литературы, 1960.
  • Church, Alonzo. An Unsolvable Problem of Elementary Number Theory
Источник —

Same as Закон двойственности