Interested Article - Распределение Вейбулла

Распределе́ние Ве́йбулла в теории вероятностей — двухпараметрическое семейство абсолютно непрерывных распределений . Названо в честь Валодди Вейбулла , детально охарактеризовавшего его в 1951, хотя впервые его определил Фреше в 1927, а применено оно было ещё в 1933 для описания распределения размеров частиц.

Определение

Пусть распределение случайной величины задаётся плотностью , имеющей вид:

Тогда говорят, что имеет распределение Вейбулла. Пишут: .

Если величину X принять за наработку до отказа , тогда получается распределение, в котором интенсивность отказов пропорциональна времени. Тогда:

  • k < 1 показывает, что интенсивность отказов уменьшается со временем
  • k = 1 показывает, что интенсивность отказов не меняется со временем
  • k > 1 показывает, что интенсивность отказов увеличивается со временем

В материаловедении коэффициент k известен как модуль Вейбулла.

Свойства

Функция плотности

Вид функции плотности распределения Вейбулла сильно зависит от значения k . Для 0 < k < 1 плотность стремится к бесконечности при и строго убывает. Для k = 1 плотность стремится к 1/λ при и строго убывает. Для k > 1 плотность стремится к 0 при , возрастает до достижения своей моды и убывает после. Плотность имеет бесконечный отрицательный угловой коэффициент в x = 0 при 0 < k < 1 , бесконечный положительный угловой коэффициент в x = 0 при 1 < k < 2, и нулевой угловой коэффициент в x = 0 при k > 2. При k = 2 плотность имеет конечный положительный угловой коэффициент в x = 0. При распределение Вейбулла сходится к дельта-функции , центрированной в x = λ . Кроме того, коэффициент асимметрии и коэффициент вариации зависят только от коэффициента формы.

Функция распределения

Функция распределения Вейбулла:

при x ≥ 0, и F(x; k; λ) = 0 при x < 0

Квантиль распределения Вейбулла:

при 0 ≤ p < 1.

Интенсивность отказов h :

Моменты

Производящая функция моментов логарифма случайной величины, имеющей распределение Вейбулла

где Γ — это гамма-функция . Аналогично, Характеристическая функция логарифма X задаётся

Моменты случайной величины , имеющей распределение Вейбулла имеют вид

, где гамма-функция ,

откуда

,
.

Коэффициент асимметрии задаётся функцией

Коэффициент эксцесса

где , так же может быть записан:

Производящая функция моментов

Существует множество выражений для производящей функции моментов самой

Так же можно работать непосредственно с интегралом

Если коэффициент k предполагается рациональным числом , выраженным k = p/q , где p и q целые, то интеграл может быть вычислен аналитически. С заменой t на -t , получается

где G — это G-функция Мейера.

Информационная энтропия

Информационная энтропия задаётся таким образом

где — это Постоянная Эйлера — Маскерони .

Оценка коэффициентов

Наибольшее правдоподобие

Оценка максимального правдоподобия для коэффициента

Для

Условная функция надёжности Вейбулла

Для 2-х параметрического распределения Вейбулла функция имеет вид:

или

Для 3-х параметрического:

Она называется условной, потому что показывает вероятность того, что объект проработает ещё времени при условии , что он уже проработал .

График Вейбулла

Данные распределения Вейбулла визуально могут быть оценены с использованием графика Вейбулла . Это график типа Q-Q выборочной функции распределения со специальными осями. Оси — и Причина изменения переменных в том, что выборочная функция распределения Вейбулла может быть представлена в линейном виде

Поэтому если данные получены из распределения Вейбулла, на графике Вейбулла можно ожидать прямую линию.

Есть множество способов получения выборочной функции распределения из данных: один из методов заключается в том, чтобы получить вертикальную координату каждой точки, используя , где — это точки данных, а — это общее количество точек.

Использование

Распределение Вейбулла используется:

Соответствие функции распределения Вейбулла выпавшей за один день годовой норме дождей
  • В прогнозировании погоды
    • Для описания распределения скорости ветра как распределения, обычно совпадающего с распределением Вейбулла в ветроэнергетике
  • В радиолокационных системах для моделирования дисперсии уровня принимаемого сигналов, создаваемой некоторыми типами помех
  • В моделировании замирания сигнала в беспроводных коммуникациях
  • В прогнозировании технологических изменений
  • В гидрологии распределение Вейбулла применимо к экстремальным событиям, таким как выпадение годовой нормы дождей за день или разливу реки. На рисунке показано такое соответствие, а также 90 % доверительный интервал , основанный на биномиальном распределении .
  • В описании размера частиц, полученных путём размельчения, помола или дробления
  • Из-за доступности используется в электронных таблицах , когда основное поведение в действительности лучше описывается распределением Эрланга

Связь с другими распределениями

  • Обычное распределение Вейбулла заменой переменной сводится к гамма-распределению .
  • 3-параметрическое распределение Вейбулла. Имеет функцию плотности

где и f ( x ; k , λ, θ) = 0 при x < θ, где — коэффициент формы, — коэффициент масштаба и коэффициент сдвига распределения. Когда θ=0, оно сводится к 2-х параметрическому распределению Вейбулла.

  • 1-параметрическое распределение Вейбулла. Выводится предполагая и :

Если — экспоненциальное распределение для параметра , то случайная величина имеет распределение Вейбулла . Для доказательства рассмотрим функцию распределения :

Полученная функция — функция распределения для распределения Вейбулла.

.
  • С распределением Фреше: если , то .
  • С распределением Гумбеля: если , то .
  • Распределение Рэлея — частный случай распределения Вейбулла при и
  • Распределение Вейбулла является частным случаем
  • Впервые распределение Вейбулла было применено для описания распределения размера частиц. Широко использовалось в обогащении полезных ископаемых при измельчении . В этом контексте

функция распределения имеет вид

где

: Размер частицы
: 80-й процентиль распределения размера частиц
: Коэффициент, описывающий размах распределения

Примечания

  1. См. ( ) для случая целого k , и ( ) в случае рационального.
  2. . Дата обращения: 20 сентября 2015. 25 марта 2008 года.
  3. Wayne Nelson (2004) Applied Life Data Analysis . Wiley-Blackwell ISBN 0-471-64462-5
  4. . Дата обращения: 21 сентября 2015. 12 октября 2014 года.
  5. Всемирная Метеорологическая Организация. Руководство по гидрологической практике. — 6. — Швейцария, 2012. — Т. 2. — С. 165. — ISBN 978-92-63-40168-7 ..

Литература

  • Fréchet, Maurice (1927), "Sur la loi de probabilité de l'écart maximum", Annales de la Société Polonaise de Mathematique, Cracovie , 6 : 93—116 .
  • Johnson, Norman L.; Kotz, Samuel; Balakrishnan, N. (1994), Continuous univariate distributions. Vol. 1 , Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics (2nd ed.), New York: John Wiley & Sons , ISBN 978-0-471-58495-7 , MR
  • Muraleedharan, G.; Rao, A.D.; Kurup, P.G.; Nair, N. Unnikrishnan; Sinha, Mourani (2007), "Modified Weibull Distribution for Maximum and Significant Wave Height Simulation and Prediction", Coastal Engineering , 54 (8): 630—638, doi :
  • Muraleedharan, G.; Soares, C.G. (2014), "Characteristic and Moment Generating Functions of Generalised Pareto (GP3) and Weibull Distributions", Journal of Scientific Research and Reports , 3 (14): 1861—1874, doi : .
  • Rosin, P.; Rammler, E. (1933), "The Laws Governing the Fineness of Powdered Coal", Journal of the Institute of Fuel , 7 : 29—36 .
  • Sagias, Nikos C.; Karagiannidis, George K. (2005), (PDF) , Institute of Electrical and Electronics Engineers. Transactions on Information Theory , 51 (10): 3608—3619, doi : , ISSN , MR (недоступная ссылка)
  • Weibull, W. (1951), (PDF) , J. Appl. Mech.-Trans. ASME , 18 (3): 293—297 .
  • . National Institute of Standards and Technology (2008).
  • Nelson, Jr, Ralph (5 февраля 2008). Дата обращения: 5 февраля 2008. 13 февраля 2008 года.
  • Левин Б.Р. Справочник по надежности. — Справочник по надежности/Под ред. Левина Б.Р., в 3 томах, Т.1. М.: Мир, 1969 г., 339 с.. — М.: Мир, 1969. — С. 176. — 339 с.
  • J. Cheng, C. Tellambura, and N. C. Beaulieu Performance analysis of digital modulations on Weibull fading channels / Proc. IEEE Veh. Technol. Conf. 2004.

Ссылки

  • (англ.)
  • (англ.)
  • (англ.)
  • (рус.)
Источник —

Same as Распределение Вейбулла