Interested Article - Уравнение Фишера
- 2020-04-10
- 1
Уравнение Фишера (также называемое эффектом Фишера и гипотезой Фишера) — уравнение , описывающее связь между темпом инфляции , номинальной и реальной ставками процента . Названо в честь Ирвинга Фишера .
Уравнение
Уравнение имеет следующий вид .
- ,
где — номинальная ставка процента; — реальная ставка процента; — темп инфляции.
Экономический смысл
Уравнение в приближенной форме (см. ) описывает явление, которое называется эффектом Фишера. Эффект состоит в том, что номинальная ставка процента может измениться по двум причинам:
- из-за изменений реальной ставки процента;
- из-за изменения темпа инфляции.
Уровень цен в экономике со временем меняется. Инвестор также размещает деньги под проценты на определенный срок. Поэтому он заинтересован в том, чтобы получить не только определенный доход, но и компенсировать падение покупательной способности денег в будущем. Например, если инвестор положил на банковский счёт сумму денег , приносящую 10 % годовых ежегодно, то номинальная ставка составит 10 %. При уровне инфляции 6 % реальная ставка составит только 4 %.
В уравнении может использоваться как фактический темп инфляции , так и его ожидаемое значение . В первом случае, формула позволяет вычислить реальную ставку на основе полученной номинальной доходности и фактического роста цен. Во втором случае инвестор может определить для себя ожидаемую номинальную доходность, исходя из прогнозируемых значений.
Вывод
Уравнение в приведенной выше форме является приближенным. Оно выполняется тем точнее, чем меньше по модулю значения и . Поэтому с математической точки зрения правильно писать приближенное равенство:
- ,
Точная запись уравнения выглядит следующим образом:
Если раскрыть скобки, то получится следующая запись:
или
С точки зрения математического анализа, если и стремятся к нулю, то произведение является бесконечно малой более высокого порядка. Поэтому при малых (по модулю) значениях и произведением можно пренебречь. В результате получится упомянутая выше приближенная запись.
Пусть, например, . Тогда сумма этих величин равна 2 %, а произведение — 0,01 %. Если же взять , то сумма получится равной 20 %, а произведение 1 %. Таким образом, с ростом значений погрешность в расчетах становится все больше.
Точную запись можно также преобразовать к следующему виду, предложенному Фишером:
В тривиальных случаях при или обе формулы (точная и приближенная) дают одинаковое значение реальной процентной ставки.
См. также
Примечания
- , с. 55.
Литература
- Вечканов Г. C., Вечканова Г. Р. . — СПб. : Питер, 2008. — С. . — (Серия «Краткий курс»). — ISBN 978-5-91180-108-3 .
- Четыркин Е. М. Финансовая математика: Учеб.. — М. : Дело, 2000. — 400 с.
- 2020-04-10
- 1