Interested Article - Неравенство Гаусса

В теории вероятностей неравенство Гаусса даёт верхнюю границу вероятности того, что одномодальная случайная величина выходит за пределы интервала с центром в её моде.

Пусть X — одномодальная случайная величина с модой m и пусть τ 2 есть математическое ожидание ( X m ) 2 . ( τ 2 может также быть выражено как ( μ m ) 2 + σ 2 , где μ и σ являются средним значением и стандартным отклонением X .)

Эта теорема была впервые доказана Гауссом в 1823 году.

Доказательство

Без ограничения общности можно считать, что мода находится в нуле, то есть .

Переход к квантилям

Рассмотрим вероятность того, что выполняется неравенство , как функцию от :

Так как является неотрицательной функцией, то растёт с ростом .

Кроме того, по определению определённого интеграла :

В силу формулы Лейбница :

Рассмотрим обратную функцию ( квантиль ) распределения случайной величины :

В силу теоремы о производной обратной функции :

Заметим, что с ростом возрастает и , в силу унимодальности с ростом по модулю функция не возрастает, значит с ростом функция не убывает.

Линеаризация функции

Выберем произвольную точку и линеаризуем точке , то есть рассмотрим уравнение касательной прямой к этой функции в данной точке:

Данное уравнение можно переписать следующим образом:

где

Поскольку величины , и являются неотрицательными, то

а значит

Так как не убывает с ростом , а то разность имеет тот же знак, что . Из этого следует, что величина всегда является неотрицательной, а следовательно:

Поскольку то из (то есть из ) следует

.

Получение оценки

Проинтегрируем последнее неравенство в пределах от до :

Последнее выражение обозначим как :

Данная величина есть математическое ожидание квадрата случайной величины . По свойствам дисперсии :

где — дисперсия случайной величины , — её математическое ожидание.

Вычислим теперь интеграл в левой части последнего неравенства:

Преобразуем это неравенство к виду

Исследование верхней границы

Исследуем верхнюю границу на экстремальные значения (в зависимости от значения ). Начнём с нахождения корней производной:

Множитель перед квадратными скобками всегда отрицателен. Определим, когда выражения в квадратных скобках обращается в нуль:

Решая данное уравнение, получим:

Величина также должно удовлетворять условию :

Решая данное неравенство, получим:

Правое неравенство не даёт дополнительной информации. Левое же говорит, что корень будет принадлежать только при

Рассмотрим сначала случай .

В этом случае всегда

а следовательно максимум выражения в квадратных скобках достигается при :

или

Если же , то максимум будет в точке Вычислим необходимые нам величины:

и

Подставляя эти выражения в исследуемое неравенство, получим:

или

Объединим полученные неравенства:

Извлекая квадратный корень, окончательно получим:

Обращение неравенств

Если , то

Откуда получаем

Это позволяет получить следующее неравенство:

Обозначая и , получим:

Завершение доказательства

Выше мы предполагали, что мода случайной величины равна нулю. В случае произвольной моды , нужно приведённые выше рассуждения применить к случайной величине , мода которой, очевидно, равна нулю. Тогда последняя формула примет вид:

Величина перейдём, по свойствам математического ожидания и дисперсии, в

Таким образом, теорема полностью доказана.

См. также

Ссылки

  • Gauss, C. F. Theoria Combinationis Observationum Erroribus Minimis Obnoxiae, Pars Prior (англ.) // Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores : journal. — 1823. — Vol. 5 .
  • Gauss C. F. / English translation by H. F. Trotter . — Princeton, NJ: Princeton University Press, 1957. — С. 10—13. 24 декабря 2016 года. от 24 декабря 2016 на Wayback Machine
  • Upton, Graham; Cook, Ian. Gauss inequality // (англ.) . — Oxford University Press , 2008.
  • Sellke, T.M.; Sellke, S.H. Chebyshev inequalities for unimodal distributions (англ.) // (англ.) : journal. — American Statistical Association, 1997. — Vol. 51 , no. 1 . — P. 34—40 . — doi : . — JSTOR .
  • Pukelsheim, F. The Three Sigma Rule (англ.) // (англ.) : journal. — American Statistical Association, 1994. — Vol. 48 , no. 2 . — P. 88—91 . — doi : . — JSTOR .
Источник —

Same as Неравенство Гаусса