Interested Article - Неравенство Йенсена

Неравенство Йенсена обобщает утверждение, что хорда к графику выпуклой функции находится над графиком.

Нера́венство Йе́нсена неравенство , связанное с понятием выпуклой функции .

Формулировки

Сумматорный вариант неравенства

Пусть функция является выпуклой на некотором интервале и числа (веса) таковы, что

и .

Тогда каковы бы ни были числа из , выполняется неравенство, известное под названием неравенства Йенсена :

или

.

Замечания:

  • Если функция вогнута (выпукла вверх), то знак в неравенстве меняется на противоположный.
  • Сам Иоган Йенсен исходил из более частного условия, отвечающего случаю :
.

Для непрерывных функций оно эквивалентно выпуклости.

Сумматорное неравенство Йенсена было известно еще Гёльдеру.

Геометрическая интерпретация

Точка является выпуклой комбинацией точек плоскости, лежащих на графике функции . Из определения выпуклой функции следует, что выпуклая оболочка этого множества точек лежит над графиком функции , а это и означает, что .

Интегральная формулировка

Пусть — выпуклая функция, вероятностная мера , а функции и интегрируемы. Тогда

Для случая меры Лебега это неравенство имеет вид

Вероятностная формулировка

Пусть вероятностное пространство , и — определённая на нём случайная величина . Пусть также — выпуклая (вниз) борелевская функция . Тогда если , то

,

где означает математическое ожидание .

Неравенство Йенсена для условного математического ожидания

Пусть в дополнение к предположениям, перечисленным выше, под-σ-алгебра событий . Тогда

,

где обозначает условное математическое ожидание относительно σ-алгебры .

Частные случаи

Неравенство Гёльдера

  • Пусть — положительные числа, , причём . Тогда
.

Неравенство о среднем арифметическом, геометрическом и гармоническом

  • Пусть (вогнутая функция). Имеем:
, или . Потенцируя, получаем неравенство .

В частности, при получаем неравенство Коши ( среднее геометрическое не превосходит среднего арифметического )

.

Неравенство между средним гармоническим и средним геометрическим

  • Пусть (выпуклая функция). Имеем:
. Положив и потенцируя, получаем:
( среднее гармоническое не превосходит среднего геометрического )

Неравенство между средним гармоническим и средним арифметическим

  • Пусть (выпуклая функция). Имеем:

В частности при получаем, что среднее гармоническое не превосходит среднего арифметического :

См. также

Примечания

  1. Durrett R. Probability: Theory and Examples (англ.) . — 5th ed.. — Cambridge University Press , 2019. — P. 25. — doi : .

Литература

  • Зорич В. А. Гл. V. Дифференциальное исчисление // Математический анализ. Часть I. — 6-е изд. — М. : МЦНМО , 2012. — С. 289—290. — 2000 экз. ISBN 978-5-94057-892-5 .
  • Фихтенгольц Г. М. Гл. IV. Исследование функций с помощью производных // Курс дифференциального и интегрального исчисления. — 8-е изд. — М. : ФИЗМАТЛИТ, 2001. — Т. 1. — С. 336—337. — 5000 экз. ISBN 5-9221-0156-0 .
Источник —

Same as Неравенство Йенсена