Interested Article - Свёртка (математический анализ)

Свёртка , конволюция — операция в функциональном анализе , которая при применении к двум функциям и возвращает третью функцию, соответствующую взаимнокорреляционной функции и . Операцию свёртки можно интерпретировать как «схожесть» одной функции с отражённой и сдвинутой копией другой. Понятие свёртки обобщается для функций, определённых на произвольных измеримых пространствах , и может рассматриваться как особый вид интегрального преобразования . В дискретном случае свёртка соответствует сумме значений с коэффициентами, соответствующими смещённым значениям , то есть

Свёртка двух прямоугольных импульсов: в результате даёт треугольный импульс.
Свёртка прямоугольного импульса (входного сигнала) с импульсным откликом RC цепи

Определение

Пусть — две функции, интегрируемые относительно меры Лебега на пространстве . Тогда их свёрткой называется функция , определённая формулой

В частности, при формула принимает вид

Свёртка определена при почти всех и интегрируема.

В случае, когда , а функции определены на промежутке , свёртку можно записать в виде

Впервые интегралы, являющиеся свёрткой двух функций, встречаются в трудах Леонарда Эйлера (1760-е годы); позднее свёртка появляется у Лапласа , Лакруа , Фурье , Коши , Пуассона и других математиков. Обозначение свёртки функций при помощи звёздочки впервые предложил Вито Вольтерра в 1912 году на своих лекциях в Сорбонне (опубликованы годом позже) .

Свойства

Коммутативность :

.

Ассоциативность :

.

Линейность ( дистрибутивность по сложению и ассоциативность с умножением на скаляр ):

,
,
.

Правило дифференцирования:

,

где обозначает производную функции по любой переменной.

Преобразование Лапласа :

.

Свойство фурье-образа :

,

где обозначает преобразование Фурье функции.

Если является матрицей дискретного преобразования Фурье , то:

,

где — символ торцевого произведения матриц , обозначает произведение Кронекера , — символ произведения Адамара (тождество является следствием свойств отсчётного скетча ).

Пример

График-гистограмма осадков
График функции — количество выпавшего снега в килограммах на начало часа.

Пусть стоит задача вычислить, как будет изменяться количество снега на каком-либо участке земли в зависимости от времени. Решение этой задачи можно разделить на два этапа:

  1. построить модель выпадения снега и модель таяния снега.
  2. каким-то образом соединить эти две модели в одну.
    Простой график одной ветви гиперболы.
    График зависимости количества нерастаявшего снега от времени прошедшего с момента его выпадения.

Задачи первого этапа решаются путём наблюдений и опытов, а задачи второго этапа — свёрткой получившихся на первом этапе моделей.

Пусть в результате решения задачи на первом этапе было построено две зависимости (математические модели):

  • зависимость количества выпавшего снега от текущего времени ,
  • зависимость доли нерастаявшего снега от времени, прошедшего с момента его выпадения .

Если бы снег не начинал таять, количество всех выпавших осадков можно было бы посчитать путём сложения в дискретном случае:

,

или путём интегрирования в случае непрерывном:

.

Но в данном случае таяние снега имеет место и, более того, оно зависит не только от текущего общего количества снега, но и от того, в какой момент времени выпал этот конкретный объём снега. Так снег, выпавший две недели назад, может уже испариться, в то время как снег, выпавший полчаса назад, ещё будет лежать и даже не начнёт подтаивать.

Получается, что для снега, выпавшего в разное время, нужно построить свою модель таяния и как-то сложить все эти модели вместе.

Для этих целей и можно использовать понятие математической свёртки. Пусть в момент времени рассматривается снег, который выпал в момент времени , тогда

  • — время выпадения снега. Например, 13:00;
  • — количество выпавшего в момент снега. Например, 7 кг;
  • — момент времени, для которого нам нужно узнать состояние выпавшего в снега. Например, 15:00;
  • — количество времени, прошедшее с момента выпадения до момента расчёта оставшейся доли снега. То есть 15:00 − 13:00 ;
  • — доля снега, которая не растаяла после того, как пролежала часов.

Нужно для каждого количества снега, выпавшего в момент времени , сложить множество моделей в одну функцию. Если это сделать, получится сумма в дискретном случае:

или интеграл в непрерывном:

Графически функция изображена ниже, где разными цветами представлены вклады каждой кучи снега из графика .

График свёртки количества выпавшего снега и закона растаивания.
График функции , где разным цветом представлен вклад каждой кучи снега (цвета вкладов соответствуют цветам куч выпавшего снега на графике выше)

Функция полностью моделирует поведение снега, выпавшего согласно модели . Так, на графике выше видно, что общее количество снега увеличивается тремя скачками, но снег начинает таять сразу, не дожидаясь выпадения других осадков.

Свёртка на группах

Пусть группа , оснащённая мерой , и — две функции, определённые на . Тогда их свёрткой называется функция [ источник не указан 1520 дней ]

Свёртка мер

Пусть есть борелевское пространство и две меры . Тогда их свёрткой называется мера [ источник не указан 1520 дней ]

где обозначает произведение мер и .

Свойства

Тогда также абсолютно непрерывна относительно , и её производная Радона — Никодима имеет вид [ источник не указан 1520 дней ]

  • Если вероятностные меры , то также является вероятностной мерой.

Свёртка распределений

Если распределения двух независимых случайных величин и , то [ источник не указан 1520 дней ]

где — распределение суммы . В частности, если абсолютно непрерывны и имеют плотности , то случайная величина также абсолютно непрерывна и её плотность имеет вид:

См. также

Примечания

  1. Domínguez A. // IEEE Pulse. — 2015. — Vol. 6, no. 1. — P. 38—49. 3 февраля 2016 года.
  2. Slyusar, V. I. (December 27, 1996). (PDF) . Radioelectronics and Communications Systems.– 1998, Vol. 41; Number 3 : 50—53. (PDF) из оригинала 27 июля 2020 . Дата обращения: 1 августа 2020 .
  3. Slyusar, V. I. (1997-05-20). (PDF) . Proc. ICATT-97, Kyiv : 108—109. (PDF) из оригинала 25 января 2020 . Дата обращения: 1 августа 2020 .
  4. Slyusar, V. I. (1997-09-15). (PDF) . Proc. Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED-97), Lviv. : 73—74. (PDF) из оригинала 25 января 2020 . Дата обращения: 1 августа 2020 .
  5. Slyusar, V. I. (March 13, 1998). (PDF) . Cybernetics and Systems Analysis C/C of Kibernetika I Sistemnyi Analiz.- 1999 . 35 (3): 379—384. doi : . (PDF) из оригинала 25 января 2020 . Дата обращения: 1 августа 2020 .
  6. Slyusar, V. I. (2003). (PDF) . Radioelectronics and Communications Systems . 46 (10): 9—17. (PDF) из оригинала 20 сентября 2020 . Дата обращения: 1 августа 2020 .
  7. Ninh, Pham; Rasmus, Pagh (2013). Fast and scalable polynomial kernels via explicit feature maps . SIGKDD international conference on Knowledge discovery and data mining. Association for Computing Machinery. doi : .

Литература

  • Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа, — М.: Наука, 2004 (7-е изд.).
  • Ширяев А. Н. Вероятность, — М. : Наука. 1989.
  • Напалков В. В. Уравнения свертки в многомерных пространствах. — М., Наука, 1982. — Тираж 3500 экз. — 240 с.

Ссылки

  • . Дата обращения: 15 ноября 2010.
Источник —

Same as Свёртка (математический анализ)