N-грамма
- 1 year ago
- 0
- 0
N-грамма — последовательность из n элементов . С семантической точки зрения это может быть последовательность звуков, слогов, слов или букв. На практике чаще встречается N-грамма как ряд слов, устойчивые словосочетания называют коллокацией . Последовательность из двух последовательных элементов часто называют биграмма , последовательность из трёх элементов называется - триграмма . Не менее четырёх и выше элементов обозначается как N-грамма, N заменяется на количество последовательных элементов.
N-граммы в целом находят своё применение в широкой области наук. Они могут применяться, например, в области теоретической математики , биологии , картографии , а также в музыке . Наиболее часто использование N-грамм включает следующие области:
Также N-граммы широко применяются в обработке естественного языка .
В области обработки естественного языка N-граммы используется в основном для предугадывания на основе вероятностных моделей . N-граммная модель рассчитывает вероятность последнего слова N-граммы, если известны все предыдущие. При использовании этого подхода для моделирования языка предполагается, что появление каждого слова зависит только от предыдущих слов .
Другим применением N-грамм является выявление плагиата . Если разделить текст на несколько небольших фрагментов, представленных N-граммами, их легко сравнить друг с другом и таким образом получить степень сходства анализируемых документов . N-граммы часто успешно используются для категоризации текста и языка. Кроме того, их можно использовать для создания функций, которые позволяют получать знания из текстовых данных. Используя N-граммы, можно эффективно найти кандидатов, чтобы заменить слова с ошибками правописания.
Целью построения N-граммных моделей является определение вероятности употребления заданной фразы. Эту вероятность можно задать формально как вероятность возникновения последовательности слов в неком корпусе (наборе текстов). К примеру, вероятность фразы «счастье есть удовольствие без раскаяния» можно вычислить как произведение вероятностей каждого из слов этой фразы:
P = P(счастье) * P(есть|счастье) * P(удовольствие|счастье есть) * P(без|счастье есть удовольствие) * P(раскаяния|счастье есть удовольствие без)
Чтобы определить P(счастье), нужно посчитать, сколько раз это слово встретилось в тексте, и поделить это значение на общее число слов. Рассчитать вероятность P(раскаяния|счастье есть удовольствие без) сложнее. Чтобы упростить эту задачу, примем, что вероятность слова в тексте зависит только от предыдущего слова. Тогда наша формула для расчета фразы примет следующий вид:
P = P(счастье) * P(есть|счастье) * P(удовольствие|есть) * P(без|удовольствие) * P(раскаяния|без)
Рассчитать условную вероятность P(есть|счастье) несложно. Для этого считаем количество пар 'счастье есть', и делим на количество в тексте слова 'счастье'.
В результате, если мы посчитаем все пары слов в некотором тексте, мы сможем вычислить вероятность произвольной фразы. Этот набор рассчитанных вероятностей и будет биграммной моделью.
Исследовательские центры Google использовали N-граммные модели для широкого круга исследований и разработок. К ним относятся такие проекты, как статистический перевод с одного языка на другой, распознавание речи , исправление орфографических ошибок, извлечение информации и многое другое. Для целей этих проектов были использованы текстовые корпусы, содержащие несколько триллионов слов.
Google решила создать свой учебный корпус. Проект называется Google teracorpus и он содержит 1 024 908 267 229 слов, собранных с общедоступных веб-сайтов .
В связи с частым использованием N-грамм для решения различных задач необходим надежный и быстрый алгоритм для извлечения их из текста. Подходящий инструмент для извлечения N-грамм должен быть в состоянии работать с неограниченным размером текста, работать быстро и эффективно использовать имеющиеся ресурсы. Есть несколько методов извлечения N-грамм из текста. Эти методы основаны на разных принципах:
Синтаксические N-граммы — это N-граммы, определяемые путями в деревьях синтаксических зависимостей или деревьях составляющих, а не линейной структурой текста . Например, предложение: «Экономические новости оказывают незначительное влияние на финансовые рынки» может быть преобразовано в синтаксические N-граммы, следуя древовидной структуре его отношений зависимостей : новости-экономические, влияние-незначительное, влияние-на-рынки-финансовые и другие .
Синтаксические N-граммы отражают синтаксическую структуру в отличие от линейных N-грамм и могут использоваться в тех же приложениях, что и линейные N-граммы, в том числе в качестве признаков в векторной модели. Применение синтаксических N-грамм дает лучшие результаты при решении определенных задач, чем использование стандартных N-грамм, например, для определения авторства .