Interested Article - Лоренцево сокращение

Лоренцево сокращение , Фицджеральдово сокращение , также называемое релятивистским сокращением длины движущегося тела или масштаба , — предсказываемый релятивистской кинематикой эффект, заключающийся в том, что с точки зрения наблюдателя движущиеся относительно него предметы и пространство имеют меньшую длину (линейные размеры) в направлении движения, чем их собственная длина . Множитель , выражающий кажущееся сжатие размеров, тем сильнее отличается от 1, чем больше скорость движения предмета.

Эффект значим, только если скорость предмета по отношению к наблюдателю сравнима со скоростью света .

Строгое определение

Пусть стержень покоится в инерциальной системе отсчёта K и расстояние между концами стержня, измеренное в К («собственная» длина стержня), равно l . Пусть далее стержень движется вдоль своей длины со скоростью v относительно некой другой ( инерциальной ) системы отсчёта K' . В таком случае расстояние l' между концами стержня, измеренное в системе отсчета K' , составит

, где c — скорость света.

При этом расстояния поперёк движения одинаковы в обеих системах отсчета K и K' .

Величина γ , обратная множителю с корнем , называется также Лоренц-фактором . С её использованием эффект можно сформулировать и так: время пролёта стержня мимо фиксированной точки системы отсчёта K' составит

.

Вывод

Преобразования Лоренца

Сокращение длины может быть выведено из преобразований Лоренца несколькими способами:

Через известную длину движущегося объекта

Пусть в инерциальной системе отсчета К и обозначают концы движущегося объекта. Тогда его длина определяется через одновременное положение концов . Собственную длину объекта в К'-системе можно рассчитать через преобразования Лоренца. Преобразование временных координат из К в К' приводит к различающемуся времени. Но это не проблема, так как объект покоится в К'-системе, и не имеет значения, в какой момент времени произведены измерения. Поэтому достаточно сделать преобразования пространственных координат, что дает:

Поскольку , то, положив и , собственная длина в К'-системе, получается

В соответствии с этим измеренная длина в К-системе получается уменьшенной

В соответствии с принципом относительности объекты, покоящиеся в К-системе, будут также уменьшены в К'-системе. Поменяв симметрично нештрихованные и штрихованные обозначения:

Тогда уменьшенная длина, измеряемая в К'-системе:

Через известную собственную длину

Если объект покоится в К-системе и известна его собственная длина, то одновременность измерений концов объекта в К'-системе необходимо рассчитать, потому что объект постоянно меняет свою позицию. В таком случае необходимо преобразовать и пространственные, и временные координаты:

Так как и , получаемые результаты не одновременны:

Для получения одновременных положений концов необходимо вычесть из расстояние, пройденное вторым концом со скоростью в течение времени :

Таким образом, движущаяся длина в К'-системе уменьшилась. Точно так же можно рассчитать симметричный результат для объекта, покоящегося в К'-системе

.

Объяснение

Сокращение длин возникает из-за свойств псевдоевклидовой геометрии пространства Минковского , аналогичных удлинению сечения, например, цилиндра, когда оно проводится не строго поперёк оси, а косо. Говоря иначе, «один и тот же момент времени» с точки зрения системы отсчёта, где стержень движется, не будет являться одним и тем же моментом с точки зрения системы отсчёта, связанной со стержнем. То есть процедура измерения расстояния в одной системе отсчёта с точки зрения любой другой системы отсчёта является не процедурой измерения чистого расстояния, когда положения, например, концов стержня засекаются в один и тот же момент времени, а смесью измерения пространственного расстояния и промежутка времени, которые вместе составляют инвариантный, то есть не зависящий от системы отсчёта, пространственно-временной интервал .

Реальность сокращения длины

Диаграмма Минковского мысленного эксперимента Эйнштейна 1911 года, изображающая сокращение длины. В результате движения двух стержней с длиной покоя со скоростью 0,6c в противоположных направлениях видно, что .

В 1911 году утверждал, что, согласно Лоренцу, сокращение длины воспринимается объективно, в то время как, по мнению Эйнштейна, это «всего лишь кажущееся субъективное явление, вызванное способом упорядочивания наших часов и измерением длин». Эйнштейн опубликовал опровержение:

Автор необоснованно заявил о различии моих взглядов и взглядов Лоренца относительно физических фактов . Вопрос о том, действительно ли существует сокращение длины, только запутывает. Его «на самом деле» не существует, поскольку оно не существует для сопутствующего наблюдателя; хотя оно «действительно» существует, то есть в том смысле, что оно в принципе может быть продемонстрировано физическими средствами сторонним наблюдателем. Альберт Эйнштейн, 1911

Эйнштейн также утверждал в этой статье, что сокращение длины — это не просто результат произвольных определений, касающихся способа упорядочивания часов и измерения длин. Он предложил следующий мысленный эксперимент: Пусть A'B' и A"B" будут концами двух стержней одинаковой длины L 0 , измеренных на x' и x" соответственно. Пусть они движутся в противоположных направлениях вдоль оси x*, рассматриваемой в состоянии покоя, с одинаковой по отношению к ней скоростью. Затем концевые точки A'A" встречаются в точке A*, а B'B" встречаются в точке B*. Эйнштейн показал, что длина A*B* короче, чем A'B 'или A''B'', что также можно продемонстрировать, остановив один из стержней по отношению к этой оси.

Значение для физики

Лоренцево сокращение лежит в основе таких эффектов, как парадокс Эренфеста и парадокс Белла , показывающих непригодность понятий классической механики к СТО. Они показывают невозможность, соответственно, раскрутить и придать ускорение гипотетическому «абсолютно твёрдому телу» .

Примечания

  1. (1964), Einstein's Theory of Relativity , Dover Publications, ISBN 0-486-60769-0
  2. Bernard Schutz. Lorentz contraction // (неопр.) . — Cambridge University Press , 2009. — С. 18. — ISBN 0521887054 .
  3. И.П. Стаханов Релятивистское сокращение длины // Зарембо Л.К., Болотовский Б.М., Стаханов И.П Школьникам о современной физике. Акустика. Теория относительности. Биофизика. — М., Просвещение, 1990. — c. 56-69
  4. . Дата обращения: 2 февраля 2021. 25 октября 2020 года.
  5. Miller, A.I. (1981), , Albert Einstein's special theory of relativity. Emergence (1905) and early interpretation (1905–1911) , Reading: Addison–Wesley, pp. , ISBN 0-201-04679-2
  6. Einstein, Albert (1911). "Zum Ehrenfestschen Paradoxon. Eine Bemerkung zu V. Variĉaks Aufsatz". Physikalische Zeitschrift . 12 : 509—510. ; Original: Der Verfasser hat mit Unrecht einen Unterschied der Lorentz schen Auffassung von der meinigen mit Bezug auf die physikalischen Tatsachen statuiert. Die Frage, ob die Lorentz -Verkürzung wirklich besteht oder nicht, ist irreführend. Sie besteht nämlich nicht "wirklich", insofern sie für einen mitbewegten Beobachter nicht existiert; sie besteht aber "wirklich", d. h. in solcher Weise, daß sie prinzipiell durch physikalische Mittel nachgewiesen werden könnte, für einen nicht mitbewegten Beobachter.

Литература

  • Физическая энциклопедия, т.2 — М.:Большая Российская Энциклопедия стр.608-609.

См. также

Источник —

Same as Лоренцево сокращение