Interested Article - Центральная симметрия

Центра́льной симметри́ей относительно точки A называют преобразование пространства , переводящее точку X в такую точку X′ , что A — середина отрезка XX′ . Центральная симметрия с центром в точке A обычно обозначается через , в то время как обозначение можно перепутать с осевой симметрией . Фигура называется симметричной относительно точки A, если для каждой точки фигуры симметричная ей точка относительно точки A также принадлежит этой фигуре. Точка A называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией.

Другие названия этого преобразования — симметрия с центром A . Центральная симметрия в планиметрии является частным случаем поворота , точнее, является поворотом на 180 градусов .

Векторная запись

  • Пусть G — оператор центральной симметрии, точка A задана радиус-вектором , а преобразовываемая точка задается радиус-вектором . Тогда имеет место следующая формула:

Связанные определения

  • Если фигура переходит в себя при симметрии относительно точки , то называют центром симметрии этой фигуры, а сама фигура называется центрально-симметричной .

Свойства

Композиция двух центральных симметрий.
  • В n -мерном пространстве если преобразование R является последовательным отражением относительно n взаимно перпендикулярных гиперплоскостей , то R - центральная симметрия относительно общей точки этих гиперплоскостей. Как следствие:
    • В чётномерных пространствах центральная симметрия сохраняет ориентацию , а в нечётномерных — не сохраняет.
  • Центральную симметрию можно представить также как гомотетию с центром A и коэффициентом −1 ( ).
  • На плоскости (в 2-мерном пространстве) симметрия с центром A представляет собой поворот на 180° с центром A ( ). Центральная симметрия на плоскости, как и поворот, сохраняет ориентацию .
  • Центральную симметрию в трёхмерном пространстве можно представить как композицию отражения относительно плоскости, проходящей через центр симметрии, с поворотом на 180° относительно прямой, проходящей через центр симметрии и перпендикулярной вышеупомянутой плоскости отражения.
  • В 4-мерном пространстве центральную симметрию можно представить как композицию двух поворотов на 180° вокруг двух взаимно перпендикулярных плоскостей (перпендикулярных в 4-мерном смысле, см. Перпендикулярность плоскостей в 4-мерном пространстве ), проходящих через центр симметрии.
  • У центрально-симметричной фигуры, либо один центр симметрии, либо их бесконечно много.

См. также

Литература

Источник —

Same as Центральная симметрия