Interested Article - Уравнитель (математика)

В математике уравнитель (также ядро разности ) — это множество аргументов, в которых две или более функции имеют равные значения. Уравнитель - это множество решений некоторого ( алгебраического , дифференциального и т. п.) уравнения. В определенных контекстах, ядро разности является уравнителем ровно двух функций.

Определение

Пусть X и Y - множества . Пусть f и g - функции , как от X , так и от Y. Тогда уравнитель f и g представляет собой множество элементов x из X таких, что f ( x ) равно g ( x ) в Y. Символически:

Уравнитель может обозначаться как Eq ( f , g ) или как вариация на эту тему (например, со строчными буквами "eq"). В неформальном контексте используется обозначение { f = g }.

В приведенном выше определении использовались две функции f и g , но нет необходимости ограничиваться только двумя функциями или даже конечным числом функций. В общем случае, если F представляет собой множество функций от X до Y , то уравнитель членов F представляет собой множество элементов x из X таких, что при задании любых двух членов f и g из F , f ( x ) равно g ( x ) в Y. Символически:

Этот уравнитель может быть записан как Eq( f , g , h , ...), если F является множеством { f , g , h , ...}. В последнем случае можно также найти { f = g = h = ···} в неформальном контексте.

Как вырожденный случай общего определения, пусть F - синглетон { f }. Поскольку f ( x ) всегда равно самому себе, уравнителем должна быть вся область X. В качестве еще более вырожденного случая пусть F - пустое множество . Тогда уравнитель снова является всей областью X , поскольку квантор всеобщности в определении .

Ядро разницы

Двоичный уравнитель (то есть уравнитель только двух функций) также называется ядром разности . Это может также обозначаться как DiffKer( f , g ), Ker( f , g ) или Ker( f g ). Последнее обозначение показывает, откуда взялась эта терминология и почему она наиболее распространена в контексте абстрактной алгебры : разностное ядро f и g − это просто ядро разностни f - g . Кроме того, ядро единственной функции f может быть восстановлено как разностное ядро Eq( f , 0), где 0 - постоянная функция с нулевым значением.

Конечно, все это предполагает алгебраический контекст, в котором ядро функции является прообразом нуля при этой функции; это верно не во всех ситуациях. Однако термин "ядро разности" не имеет другого значения.

В теории категорий

Уравнители могут быть определены универсальным свойством , которое позволяет обобщить понятие из категории множеств на произвольные категории .

В общем контексте X и Y являются объектами, в то время как f и g являются морфизмами от X до Y. Эти объекты и морфизмы образуют диаграмму в рассматриваемой категории, а уравнитель - это просто предел (если он существует) этой диаграммы.

Говоря более явно, уравнитель состоит из объекта E и такого морфизма , удовлетворяющему , что для любого морфизма , удовлетворяющему , существует единственный морфизм такой, что , для которого следующая диаграмма коммутативна:

Говорят, что морфизм уравнивает и если .

В любой универсальной алгебраической категории, включая категории, в которых используются ядра разности, а также саму категорию множеств, объект E всегда можно считать обычным понятием уравнителя, а морфизм eq в этом случае можно считать функцией включения E как подмножества X .

Обобщение этого на более чем два морфизма является простым; просто используйте большую диаграмму с большим количеством морфизмов в ней. Вырожденный случай только одного морфизма также прост; тогда eq может быть любым изоморфизмом от объекта E до X. Правильная диаграмма для вырожденного случая без морфизмов немного сложна: можно изначально нарисовать диаграмму как состоящую из объектов X и Y и без морфизмов. Однако это неверно, поскольку пределом такой диаграммы является произведение X и Y , а не уравнитель. (И действительно, произведения и уравнители — это разные понятия: теоретико-множественное определение произведения не согласуется с теоретико-множественным определением уравнителя, упомянутого выше, следовательно, они на самом деле разные.) Вместо этого соответствующее понимание заключается в том, что каждая диаграмма уравнителя принципиально связана с X , включая Y только потому, что Y является областью значений морфизмов, которые появляются на диаграмме. С этой точки зрения мы видим, что если нет задействованных морфизмов, Y не появляется, и диаграмма уравнителя состоит только из X. Тогда пределом этой диаграммы является любой изоморфизм между E и X.

Можно доказать, что любой уравнитель в любой категории является мономорфизмом . Если в данной категории выполняется обратное , то эта категория называется регулярной (в смысле мономорфизмов). В более общем смысле, регулярным мономорфизмом в любой категории является любой морфизм m , который является уравнителем некоторого множества морфизмов. Некоторые авторы более строго требуют, чтобы m было двоичным уравнителем, то есть уравнителем ровно двух морфизмов. Однако, если рассматриваемая категория является полной , то оба определения согласуются. Понятие ядра разности также имеет смысл в контексте теории категорий. Терминология "ядро разности" является общей во всей теории категорий для любого двоичного уравнителя. В случае предаддитивной категории (категории, обогащенной над категорией абелевых групп ) термин "ядро разности" можно интерпретировать буквально, поскольку вычитание морфизмов имеет смысл. То есть, Eq( f , g ) = Ker( f - g ), где Ker обозначает теоретико-категориальное ядро .

Любая категория с расслоёнными произведениями ( коамальгамами ) и произведениями имеет уравнители.

Примеры

  • В категории множеств уравнитель двух отображений и — это естественное вложение во множество множества, на котором и совпадают, то есть множества .
  • Аналогичным образом определяется уравнитель в категории топологических пространств .
  • В категории абелевых групп уравнитель гомоморфизмов совпадает с ядром их разности. Именно поэтому уравнитель в произвольной категории также иногда называют ядром разности, хотя в не предаддитивной категории, вообще говоря, разность морфизмов не определена.
  • В категориях групп , абелевых групп , векторных пространств или колец , ядро разности двух морфизмов определяется ядром разности базовых отображений множеств.
  • Если рассматриваемая категория имеет нулевые объекты и является нулевым морфизмом , то ядро разности и есть не что иное, как ядро . Таким образом, каждое ядро является примером ядра разности.

Смотрите также

Список литературы

  • Маклейн С. Глава 3. Универсальные конструкции и пределы // Категории для работающего математика = Categories for the working mathematician / Пер. с англ. под ред. В. А. Артамонова . — М. : Физматлит, 2004. — С. 68—94. — 352 с. — ISBN 5-9221-0400-4 .


Источник —

Same as Уравнитель (математика)