Теорема Стокса
- 1 year ago
- 0
- 0
Теорема Гудстейна — теорема математической логики о натуральных числах , доказанная Рубеном Гудстейном в 1944 году . Утверждает, что все последовательности Гудстейна заканчиваются нулём. В 1982 году и Джефф Парис показали, что теорема Гудстейна недоказуема в арифметике первого порядка . Тем не менее она может быть (и была) доказана, например, в .
Рассмотрим представление целых положительных чисел в виде суммы степенных членов с одинаковым основанием.
Например, запишем число 581, используя основание 2:
Разложим показатели степени по тому же принципу:
Подобное разложение можно получить для любого числа.
Будем рекурсивно применять к получившемуся выражению следующую операцию:
Таким образом, после применения первой операции (меняем 2 на 3 и вычитаем единицу из числа) будет получено выражение
После второй (меняем 3 на 4 и вычитаем единицу из числа):
После третьей (меняем 4 на 5 и вычитаем единицу из числа):
Теорема Гудстейна утверждает, что в конце концов всегда будет получен 0.
Верно и более сильное утверждение: Если прибавлять вместо 1 какое-то произвольное число к основанию и его же отнимать от самого числа, то всегда будет получаться 0 даже в том случае, когда показатели степеней не разложены изначально по основанию 2.
Последнее основание в качестве дискретной функции от исходного числа растёт очень быстро, и уже при оно достигает значения . При оно всегда будет числом Вудала .
Рассмотрим пример последовательности Гудстейна для чисел 1, 2 и 3.
Число | Основание | Запись | Значение |
---|---|---|---|
1 | 2 | 1 | 1 |
3 | 1 - 1 | 0 | |
2 | 2 | 2 1 | 2 |
3 | 3 1 − 1 | 2 | |
4 | 2 - 1 | 1 | |
5 | 1 − 1 | 0 | |
3 | 2 | 2 1 + 1 | 3 |
3 | (3 1 + 1) − 1 = 3 1 | 3 | |
4 | 4 1 − 1 = 1 + 1 + 1 | 3 | |
5 | (1 + 1 + 1) − 1 = 1 + 1 | 2 | |
6 | (1 + 1) − 1 = 1 | 1 | |
7 | 1 − 1 = 0 | 0 |