Interested Article - Плосконосая квадратная мозаика

Плосконосая квадратная мозаика
Тип Полуправильная мозаика
Конфигурация
граней

3.3.4.3.4
Символ
Шлефли
s{4,4}
sr{4,4} или
| 4 4 2
Диаграммы
Коксетера — Дынкина
node_h 4 node_h 4 node
node_h 4 node_h 4 node_h или node_h split1-44 nodes_hh
Симметрия p4g , [4 + ,4], (4*2)
Симметрия
вращения
p4 , [4,4] + , (442)
Двойственная
мозаика
Каирская пятиугольная мозаика
Свойства вершинно транзитивная

Плосконосая квадратная мозаика — это полуправильное замощение плоскости . В каждой вершине сходятся три треугольника и два квадрата. Символ Шлефли мозаики — s{4,4}.

Конвей называл эту мозаику snub quadrille (плосконосая кадриль), поскольку мозаика строится с применением операции snub (отсечения углов) к квадратной мозаике (в терминах Конвея — quadrille ).

Существует 3 правильные и 8 полуправильных мозаик на плоскости.

Однородные раскраски

Существует 2 различные однородные раскраски плосконосой квадратной мозаики. Цвета граней по индексам цвета вокруг вершины (3.3.4.3.4), 11212), 11213.

Раскраска
11212

11213
Симметрия 4*2, [4 + ,4], (p4g) 442, [4,4] + , (p4)
Символ Шлефли s{4,4} sr{4,4}
| 4 4 2
Диаграммы
Коксетера — Дынкина
node_h 4 node_h 4 node node_h 4 node_h 4 node_h

Упаковка кругов

Плосконосую квадратную мозаику можно использовать для упаковки кругов , если размещать круги одинакового диаметра с центрами в вершинах квадратов. Каждый круг соприкасается с пятью другими кругами упаковки ( контактное число ) .

Построение Витхоффа

Плосконосую квадратную мозаику можно построить применением операции отсечения углов к квадратной мозаике или путём усечённой квадратной мозаики .

Частичное усечение удаляет каждую вторую вершину, создавая треугольные грани на месте удалённых вершин и уменьшает число сторон граней наполовину. В этом случае, начиная с усечённой квадратной мозаики с двумя восьмиугольниками и одним квадратом для каждой вершины, частичное усечение превращает восьмиугольные грани в квадраты, а квадратные грани вырождаются в рёбра, в результате чего появляются 2 дополнительных треугольника на месте усечённых вершин вокруг исходного квадрата. Если исходная мозаика состоит из правильных граней, вновь образованные треугольники будут равнобедренными . Если начать с восьмиугольников, в которых чередуются длинные и короткие стороны, образуется плосконосая мозаика с равносторонними треугольными гранями.

Пример:


Частично усечённые правильные восьмиугольники
(Частичное
усечение)

Равнобедренные треугольники (Неоднородная мозаика)

Частично усечённые неправильные восьмиугольники
(Частичное
усечение)

Равносторонние треугольники

Связанные мозаики

Эта мозаика связана с , которые тоже имеют три треугольника и два квадрата на одну вершину, но порядок этих элементов в вершинной фигуре другой. Плосконосую квадратную мозаику можно считать связанной с этой трёхцветной квадратной мозаикой , в которой красные и жёлтые квадраты повёрнуты (с увеличением размера), а синие квадраты искривляются до ромбов , а затем разбиваются на два треугольника.

Связанные многогранники и мозаики

Плосконосая квадратная мозаика подобна с вершинной конфигурацией 3.3.3.4.4 и двум 2-однородным двойственным мозаикам и двум 3-однородным двойственным мозаикам, в которых смешаны два типа пятиугольников :


3.3.3.4.4

3.3.4.3.4

Плосконосая квадратная мозаика является третьей в последовательности многогранников с отсечёнными вершинами и мозаик с вершинной фигурой 3.3.4.3. n .

Плосконосая квадратная мозаика является третьей в последовательности многогранников с отсечёнными вершинами и мозаик с вершинной фигурой 3.3. n .3. n .

См. также

Примечания

  1. , с. 74—75.
  2. , с. 147—165.
  3. . Дата обращения: 20 декабря 2017. Архивировано из 9 сентября 2006 года.

Литература

Ссылки

  • Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .
Источник —

Same as Плосконосая квадратная мозаика