Теорема Стокса
- 1 year ago
- 0
- 0
Теорема Тебо — три теоремы планиметрии , приписываемые .
Центры квадратов , построенных на сторонах параллелограмма , лежат в вершинах квадрата. |
Эта теорема является частным случаем теоремы Ван-Обеля и аналогична теореме Наполеона .
Если на каждой из двух соседних сторон квадрата построить по равностороннему треугольнику (либо оба внутрь, либо оба вовне квадрата), то вершины этих 2 треугольников, не являющиеся вершинами квадрата, и вершина квадрата, не являющаяся вершиной треугольников, образуют равносторонний треугольник. |
Доказана в 1930-х годах.
Пусть — произвольный треугольник , — произвольная точка на стороне , — центр окружности, касающейся отрезков и описанной около окружности, — центр окружности, касающейся отрезков и описанной около окружности. Тогда отрезок проходит через точку — центр окружности, вписанной в , и при этом , где . |
Теорема [ нет в источнике ] . Если во вписанном в окружность четырёхугольнике провести диагональ, а в полученные два треугольника вписать две окружности, затем аналогично поступить, проведя вторую диагональ, тогда центры четырёх образовавшихся окружностей являются вершинами прямоугольника. |
|
В другом языковом разделе
есть более полная статья
(фр.)
.
|