Interested Article - Экспонента
![](/images/006/368/6368311/1.jpg?rand=596211)
![](https://cdn.wafarin.com/avatars/4af09080574089cbece43db636e2025f.jpg)
- 2020-08-21
- 1
![](/images/006/368/6368311/1.jpg?rand=449112)
Касательная (красным) в нуле у функции наклонена на .
Рядом для примера показаны (точками) и (штрихами)
Экспоне́нта — показательная функция , где — число Эйлера .
Определение
Экспоненциальная функция может быть определена различными эквивалентными способами. Например, через ряд Тейлора :
или через предел :
- .
Здесь — любое комплексное число .
Происхождение понятия
Слово экспонента происходит от лат. " exponere", что переводится как " выставить вперёд; показать ", которое в свою очередь произошло от лат. приставки " ex-" ("впереди") и лат. слова " ponere" ("ставить, расположить"); Смысл использования такого слова для показателя степени заключается в том, что знак экспоненты "ставят вне" привычной линии письма (немного выше и правее места, где обычно должна быть поставлена цифра).
Свойства
- , а в частности, экспонента — единственное решение дифференциального уравнения с начальными данными . Кроме того, через экспоненту выражаются общие решения однородных дифференциальных уравнений .
- Экспонента определена на всей вещественной оси. На ней экспонента всюду возрастает и строго больше нуля.
- Экспонента — выпуклая функция .
- Обратная функция к ней — натуральный логарифм .
- Преобразование Фурье экспоненты — обобщённая функция , а именно дельта-функция Дирака .
- Преобразование Лапласа экспоненты определено в области .
- Производная в нуле равна , поэтому касательная к экспоненте в этой точке проходит под углом или .
-
Основное функциональное свойство экспоненты, как и всякой показательной функции:
- .
- Непрерывная функция с таким свойством либо тождественно равна , либо имеет вид , где — некоторая константа.
- , где и — гиперболические синус и косинус .
- В приложениях экспонента участвует в математическом описании таких процессов, в которых скорость изменения некоторого количества в каждый момент пропорциональна самому количеству. Например, при размножении микроорганизмов делением их число возрастает по экспоненте. Чем больше микроорганизмов становится, тем быстрее нарастает их биомасса (при отсутствии смертности).
Комплексная экспонента
![](/images/006/368/6368311/29.jpg?rand=215325)
Комплексная экспонента — математическая функция , задаваемая соотношением , где есть комплексное число . Комплексная экспонента определяется как аналитическое продолжение экспоненты вещественного переменного :
Определим формальное выражение
- .
Определённое таким образом выражение на вещественной оси будет совпадать с классической вещественной экспонентой. Для полной корректности построения необходимо доказать аналитичность функции , то есть показать, что разлагается в некоторый сходящийся к данной функции ряд. Покажем это:
- .
Сходимость данного ряда легко доказывается:
- .
Ряд всюду сходится абсолютно , то есть вообще всюду сходится, таким образом, сумма этого ряда в каждой конкретной точке будет определять значение аналитической функции . Согласно теореме единственности , полученное продолжение будет единственно, следовательно, на комплексной плоскости функция всюду определена и аналитична.
Свойства
- Комплексная экспонента — целая голоморфная функция на всей комплексной плоскости . Ни в одной точке она не обращается в ноль.
- — периодическая функция с основным периодом 2 π i : . В силу периодичности комплексная экспонента бесконечнолистна . В качестве её области однолистности можно выбрать любую горизонтальную полосу высотой .
- — единственная с точностью до постоянного множителя функция, производная (а соответственно, и первообразная ) которой совпадает с исходной функцией.
-
Алгебраически экспонента от комплексного аргумента
может быть определена следующим образом:
- ( формула Эйлера ).
-
В частности, имеет место
тождество Эйлера
:
Вариации и обобщения
Аналогично экспонента определяется для элемента произвольной ассоциативной алгебры . В конкретном случае требуется также доказательство того, что указанные пределы существуют.
Матричная экспонента
Экспоненту от квадратной матрицы (или линейного оператора ) можно формально определить, подставив матрицу в соответствующий ряд:
Определённый таким образом ряд сходится для любого оператора с ограниченной нормой, поскольку мажорируется рядом для экспоненты нормы Следовательно, экспонента от матрицы всегда определена и сама является матрицей.
С помощью матричной экспоненты легко задать вид решения линейного дифференциального уравнения с постоянными коэффициентами : уравнение с начальным условием имеет своим решением
h -экспонента
Введение -экспоненты основано на втором замечательном пределе :
При получается обычная экспонента .
Обратная функция
Обратная функция к экспоненциальной функции — натуральный логарифм . Обозначается :
См. также
- Показательная функция
- Список интегралов от экспоненциальных функций
- Экспоненциальный рост
- Двойная экспоненциальная функция
Примечания
- (англ.) . Дата обращения: 27 августа 2022. 27 августа 2022 года.
- . Дата обращения: 21 апреля 2014. 21 сентября 2017 года.
Литература
- Лаврентьев М. А., Шабат Б. В. Методы теории функций комплексного переменного. — Издание 5-е, исправленное. — М.: Наука, 1987. — 688 с.
- Хапланов М. Г. Теория функции комплексного переменного (краткий курс). — Издание 2-е, исправленное. — М.: Просвещение, 1965. — 209 с.
Ссылки
- (англ.)
![](https://cdn.wafarin.com/avatars/4af09080574089cbece43db636e2025f.jpg)
- 2020-08-21
- 1