Interested Article - Предельная точка

Преде́льная то́чка множества в общей топологии — это такая точка, любая проколотая окрестность которой пересекается с этим множеством.

Определение и типы предельных точек

Точка называется предельной точкой подмножества в топологическом пространстве , если всякая проколотая окрестность точки имеет с непустое пересечение.

Точка называется точкой накопления подмножества , если всякая окрестность точки имеет с бесконечное число общих точек. Для T 1 -пространств (то есть пространств, у которых все точки (одноточечные множества) замкнуты), понятия предельная точка и точка накопления равносильны.

Точка называется точкой конденсации подмножества , если всякая окрестность точки содержит несчётное множество точек .

Точка называется точкой полного накопления подмножества , если для всякой окрестности точки мощность пересечения равна мощности множества .

Связанные понятия и свойства

  • Точка называется точкой прикосновения подмножества в топологическом пространстве , если всякая окрестность точки имеет с непустое пересечение. Множество всех точек прикосновения множества составляет его замыкание .
  • Изолированной называется такая точка , у которой есть окрестность, не имеющая с других общих точек, кроме . Подмножество в , состоящее из одной этой точки, является открытым в индуцированной топологии ).
  • Таким образом, все точки прикосновения любого множества (то есть точки замыкания ) делятся на два вида: предельные и изолированные точки . Вторые составляют подмножество , первые же могут как принадлежать, так и не принадлежать ему.
  • Совокупность всех предельных точек множества называется его произво́дным мно́жеством и обозначается . Все предельные точки множества входят в его замыкание . Более того, справедливо равенство: , из которого легко получается следующий критерий замкнутости подмножеств : Множество A замкнуто тогда и только тогда, когда содержит все свои предельные точки.
  • Если — предельная точка множества , то существует направление точек из , сходящееся к .
  • В метрических пространствах , если — предельная точка множества , то существует последовательность точек из сходящаяся к . Топологические пространства, для которых выполняется это свойство, называются пространствами Фреше — Урысона .
  • Топологическое пространство компактно тогда и только тогда, когда в нём всякое бесконечное подмножество имеет хотя бы одну точку полного накопления в .
  • Топологическое пространство счётно компактно тогда и только тогда, когда в нём всякое бесконечное подмножество имеет хотя бы одну строгую предельную точку в . Всякий компакт счётно компактен. Для метрических пространств верно и обратное (критерий компактности метрического пространства): метрическое пространство компактно тогда и только тогда, когда оно счётно компактно.
(В частности, поскольку отрезок прямой компактен, то он счётно компактен. Следовательно, всякое бесконечное ограниченное подмножество прямой имеет хотя бы одну предельную точку.)

Примеры

  • Рассмотрим множество вещественных чисел со стандартной топологией , порождённой открытыми интервалами. Тогда относительно этой топологии имеем:
    • где — множество рациональных чисел ;
    • где — множество целых чисел ;
  • Пусть ординал . Рассмотрим — ординал с . Точка является предельной точкой множества , однако не существует последовательности из элементов этого множества, сходящейся к .

Предельная точка числового множества

В частности, предельной точкой числового множества, имеющего бесконечное число элементов, называется точка числовой прямой , в любой окрестности которой содержится бесконечно много элементов этого множества. Также можно считать предельной точкой такого множества , если из некоторых его элементов можно составить бесконечно большую последовательность с попарно различными отрицательными элементами. Если же можно составить бесконечно большую последовательность с попарно различными положительными элементами, то можно считать предельной точкой .

Верхняя предельная точка числового множества — это наибольшая из его предельных точек.

Нижняя предельная точка числового множества — это наименьшая из его предельных точек.

Свойства

  • У любого ограниченного числового множества, имеющего бесконечное число элементов, существуют и верхняя, и нижняя предельные точки (в множестве вещественных чисел ). Если добавить в множество вещественных чисел и , то в получившемся множестве предельные точки имеют вообще все числовые множества с бесконечным числом элементов.
  • Из элементов любого ограниченного числового множества, имеющего бесконечное число элементов, можно выделить сходящуюся последовательность, элементы которой попарно различны.

Предельная точка числовой последовательности

Предельная точка последовательности — это точка, в любой окрестности которой содержится бесконечно много элементов этой последовательности .

— предельная точка последовательности

Наибольшая предельная точка последовательности называется её верхним пределом , а наименьшая предельная точка — нижним пределом .

Иногда во множество возможных предельных точек включают « » и « ». Так, если из последовательности можно выделить бесконечно большую подпоследовательность, все элементы которой отрицательны, то говорят, что « » является предельной точкой этой последовательности. Если же из последовательности можно выделить бесконечно большую подпоследовательность с исключительно положительными элементами, то говорят, что « » является её предельной точкой . При этом, разумеется, у последовательности могут быть и другие предельные точки.

Свойства

  • Точка является предельной точкой последовательности тогда и только тогда, когда из этой последовательности можно выделить подпоследовательность , сходящуюся к этой точке (то есть точка является частичным пределом последовательности ).
    — предельная точка последовательности
    Иногда это свойство принимают за определение, а приведённое выше определение — за свойство.
  • Всякая сходящаяся числовая последовательность имеет только одну предельную точку.
    — предельные точки последовательности
  • Предельная точка любой сходящейся числовой последовательности совпадает с её пределом .
    — предельная точка последовательности
  • Для любого конечного множества точек можно построить последовательность, для которой эти точки будут являться предельными и никакие, кроме них.
  • У произвольной числовой последовательности имеется хотя бы одна предельная точка (либо вещественная , либо бесконечность ).

Примеры

  • У последовательности из единиц существует единственная предельная точка 1 (хотя она не является предельной точкой множества значений элементов последовательности, состоящего из одного элемента).
  • У последовательности существует единственная предельная точка 0.
  • У последовательности натуральных чисел нет предельных точек (или, в других терминах, имеется предельная точка ).
  • У последовательности существуют две предельные точки: −1 и +1.
  • У последовательности из всех рациональных чисел , занумерованных произвольным образом, существует бесконечно много предельных точек.

Предельная точка направления

Пусть направление элементов топологического пространства . Тогда называется предельной точкой направления, если для любой окрестности точки и для любого найдётся индекс такой что и

Свойства

  • Точка является предельной точкой направления тогда и только тогда, когда существует поднаправление, сходящееся к этой точке.
    • В частности, точка является предельной точкой последовательности тогда и только тогда, когда существует поднаправление , сходящееся к этой точке.
    • Если каждая точка топологического пространства обладает счётной базой, то в предыдущем пункте можно говорить о подпоследовательностях.

Примеры

Пусть — направлено по возрастанию. У направления существует единственная предельная точка в топологическом пространстве .

См. также

Примечания

  1. В. А. Ильин , В. А. Садовничий , Бл. Х. Сендов . Глава 3. Теория пределов // / Под ред. А. Н. Тихонова . — 3-е изд. , перераб. и доп. — М. : Проспект, 2006. — Т. 1. — С. 92—105. — 672 с. — ISBN 5-482-00445-7 . 23 июня 2015 года.

Литература

Источник —

Same as Предельная точка